Skip to main content

Muscle Contraction Mechanics from Ultrastructural Dynamics

  • Chapter

Abstract

The quantitative description of muscle contraction has evolved into two separate foci: Lumped descriptions based on Hill’s contractile element [e.g., (31)] and crossbridge models based on Huxley’s description of a single sarcomere [e.g., (9)]. The earliest quantitative descriptions of muscle are lumped whole muscle models, with the simplest mechanical description being a purely elastic spring. Potential energy is stored when the spring is stretched and shortening occurs when it is released. The idea of muscle elastance can be traced back to Weber (1846) (48), who considered muscle as an elastic material that changes state during activation via conversion of chemical energy. Subsequently, investigators retained the elastic description but ignored metabolic alteration of muscle stiffness. Fick (1891) (12) and later Blix (1893) (2) refuted the purely elastic model on thermody-namic grounds. They found that potential energy stored during stretching was less than the sum of the energy released during shortening as work and heat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen DG, Blinks JR. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978;273:509–513.

    Article  PubMed  CAS  Google Scholar 

  2. Blix M. Die Länge und die Spannung des Muskels. Skand Arch Physiol. 1893;4:399.

    Article  Google Scholar 

  3. Bluhm WF, McCulloch AD, Lew WYW. Technical note: Active force in rabbit ventricular myocytes. J Biomech. 1995;28:1119–1122.

    Article  PubMed  CAS  Google Scholar 

  4. Brady AJ. Onset of contractility in cardiac muscle. J Physiol. 1966;184:560–580.

    PubMed  CAS  Google Scholar 

  5. Brady AJ. Mechanical properties of isolated cardiac myocytes. Physiol Rev. 1991;71:413–428.

    PubMed  CAS  Google Scholar 

  6. Brandt PW, Colomo F, Poggesi C, Tesi C. Taking the first steps in contraction mechanics of single myocytes from frog heart. In: Sugi H, Pollack GH, eds. Mechanism of Myofilament Sliding in Muscle Contraction. New York: Plenum Press; 1993, pp. 627–637.

    Chapter  Google Scholar 

  7. Colomo F, Poggesi C, Tesi C. Force responses to rapid length changes in single intact cells from frog heart. J Physiol. 1994;475:347–350.

    PubMed  CAS  Google Scholar 

  8. Ebashi S, Endo M. Calcium ion and muscle contractions. Prog Biophys Mol Biol. 1968;18:125–183.

    Article  Google Scholar 

  9. Eisenberg E, Hill TL, Chen Y. Cross-bridge model of muscle contraction. Biophys J. 1980;29:195–227.

    Article  PubMed  CAS  Google Scholar 

  10. Fenn WO, Marsh BS. Muscular force at different speeds of shortening. J Physiol. 1935;85:277–297.

    PubMed  CAS  Google Scholar 

  11. Fick A. Mechanische Arbeit und Wärmeentwicklung bei der Muskelthätigkeit. Leipzig: Brockhaus; 1882.

    Google Scholar 

  12. Fick A. Neue Beitrage zur Kentniss von der Wärmeentwicklung im Muskel. Pflügers Arch. 1891;51:541.

    Article  Google Scholar 

  13. Finer JT, Simmons RM, Spudich JA. Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature. 1994;368:113–119.

    Article  PubMed  CAS  Google Scholar 

  14. Ford LE, Huxley AF, Simmons RM. Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J Physiol. 1977;269:441–515.

    PubMed  CAS  Google Scholar 

  15. Goldman YE, Huxley AF. Actin compliance: Are you pulling my chain? Biophys J. 1994;67:2131–2136.

    Article  PubMed  CAS  Google Scholar 

  16. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol. 1966;184:170–192.

    PubMed  CAS  Google Scholar 

  17. Heidenhain R. Mechanische Leistung, Wärmeentwicklung und Stoffumsatz bei der Muskeltätigkeit. Ein Beitrag zur Theorie der Muskelkräfte. Leipzig: Breitkopf and Härtel; 1864.

    Google Scholar 

  18. Hill AV. The maximum work and mechanical efficiency of human muscles, and their most economical speed. J Physiol. 1922;56:19.

    PubMed  CAS  Google Scholar 

  19. Hill AV. The heat of shortening and dynamic constants of muscle. Proc Roy Soc London (B). 1939;126:136–195.

    Article  Google Scholar 

  20. Hirose K, Franzini-Armstrong C, Goldman YE, Murray, JM. Structural changes in muscle crossbridges accompanying force generation. J Cell Biol. 1994;127:763–778.

    Article  PubMed  CAS  Google Scholar 

  21. Housmans PR. The relation between contraction dynamics and the intracellular calcium transient in mammalian cardiac muscle. In: te Keurs HEDJ, Noble MIM, eds. Starling’s Law of the Heart Revisited. Dordrecht: Kluwer; 1988, pp. 60–66.

    Chapter  Google Scholar 

  22. Huxley AF. Muscle structure and theories of contraction. Prog Biophys. 1957;7:255–318.

    CAS  Google Scholar 

  23. Huxley AF, Simmons RM. Proposed mechanism of force generation in striated muscle. Nature (London). 1971;233:533–538.

    Article  CAS  Google Scholar 

  24. Huxley AF, Simmons RM. Mechanical transients and the origin of muscle force. Cold Spring Harbor Symp Quant Biol. 1973;37:669–680.

    Article  CAS  Google Scholar 

  25. Huxley HE, Faruqi AR, Bordas J, Koch MHJ, Milch JR. The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature. 1980;284:140–143.

    Article  PubMed  CAS  Google Scholar 

  26. Julian FJ, Sollins KR, Sollins MR. A model for muscle contraction in which cross-bridge attachment and force generation are distinct. Cold Spring Harbor Symp Quant Biol. 1973;37:685–688.

    Article  CAS  Google Scholar 

  27. Kurihara S, Komukai K. Tension-dependent changes of the intracellular Ca++ transients in ferret ventricular muscles. J Physiol. 1995;489:617–625.

    PubMed  CAS  Google Scholar 

  28. LeGuennec JY, Peineau N, Argibay JA, Mongo KG, Gamier D. A new method of attachment of isolated mammalian ventricular myocytes for tension recording: Length dependence of passive and active tension. J Mol Cell Cardiol. 1990;22:1083–1093.

    Article  CAS  Google Scholar 

  29. Lombardi V, Piazzesi G. The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol 1990;431:141–171.

    PubMed  CAS  Google Scholar 

  30. Lowey S, Cohen CJ. Mol Biol 1962;4:293–308.

    Article  CAS  Google Scholar 

  31. Montevecchi FM, Pietrabissa R. A model of multicomponent cardiac fiber. J Biomech. 1987;20(4):365–370.

    Article  PubMed  CAS  Google Scholar 

  32. Morgan DL, Mochon S, Julian FJ. A quantitative model of intersarcomere dynamics during fixed-end contractions of single frog muscle fibers. Biophys J. 1982;39:189–196.

    Article  PubMed  CAS  Google Scholar 

  33. Morel JE. Letter to the editor: The isometric force exerted per myosin head in a muscle fibre is 8pN: Consequence on the validity of the traditional concepts for force generation. J Theor Biol 1991;151:285–288.

    Article  PubMed  CAS  Google Scholar 

  34. Needham DM. Machina Carnis. Cambridge: Cambridge University Press; 1971.

    Book  Google Scholar 

  35. Offer G, Elliot A. Can a myosin molecule bind to two actin filaments? Nature. 1978;271:325–329.

    Article  PubMed  CAS  Google Scholar 

  36. Palladino JL. Models of Cardiac Muscle Contraction and Relaxation. Philadelphia PA: University of Pennsylvania; Ann Arbor: University Microforms Inc.; 1990. Dissertation.

    Google Scholar 

  37. Parikh SS, Zou S-Z, Tung L. Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads. Circ Res. 1993;72:297–311.

    Article  PubMed  CAS  Google Scholar 

  38. Parmly WW, Brutsaert DL, Sonnenblick EH. Effect of altered loading on contractile events in isolated cat papillary muscle. Circ Res. 1969;24:521.

    Article  Google Scholar 

  39. Peachy LD, Franzini-Armstrong C. Structure and function of membrane systems of skeletal muscle cells. Chap. 2. In: Handbook of Physiology, Section 10, Bethesda: American Physiological Society, 1983, pp. 23–71.

    Google Scholar 

  40. Pollack GH, Granzier HLM, Mattiazzi A, Trombitas C, Periasamy A, Baatsen PHWW, Burns DH. Pauses, steps, and the mechanism of contraction. Adv Exp Med Biol 1988;266:617–642.

    Google Scholar 

  41. Pollack GH. Muscles and Molecules: Uncovering the Principles of Biological Motion. Seattle: Ebner &Sons; 1990.

    Google Scholar 

  42. Reedy MK, Reedy MC. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol 1985;185:145–176

    Article  PubMed  CAS  Google Scholar 

  43. Shepherd N, Fisher VJ. Combined force and voltage measurement in rapidly superperfused guinea pig heart cells. Am J Physiol. 1990;258:C739–748.

    Google Scholar 

  44. Shepherd N, Vornanen M, Isenberg G. Force measurements from voltage-clamped guinea pig ventricular myocytes. Am J Physiol 1990;258:H452–459.

    Google Scholar 

  45. Squire J. The Structural Basis of Muscular Contraction. New York: Plenum Press; 1981.

    Book  Google Scholar 

  46. Squire J. Molecular Mechanisms in Muscle Contraction. Boca Raton, FL: CRC Press; 1990.

    Google Scholar 

  47. Tung L. An ultrasensitive transducer for measurement of isometric contractile force from single heart cells. Pflügers Arch. 1986;407:109–115.

    Article  PubMed  CAS  Google Scholar 

  48. Weber, E. Muskelbewegung. In: Wagner R, ed. Handwörterbuch der Physiologie. Vol. 3B. Braunschweig: Vieweg; 1846 pp. 1–122.

    Google Scholar 

  49. Westerhof N, Noordergraaf A. Arterial viscoelasticity: A generalized model. J Biomech. 1970;3:357–379.

    Article  PubMed  CAS  Google Scholar 

  50. White E, Boyett MR, Orchard CH. The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol. 1995;482:93–107.

    PubMed  CAS  Google Scholar 

  51. Winegrad S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol. 1968;51:65–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palladino, J.L., Noordergraaf, A. (1998). Muscle Contraction Mechanics from Ultrastructural Dynamics. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics