Skip to main content

Measurement and Applications of Arterial and Ventricular Pressure-Dimension Relationships in Animals and Humans

  • Chapter
  • 101 Accesses

Abstract

To assess the proper functioning of the cardiovascular system in health and disease, it is important to characterize the dynamic properties of the cavities receiving, propelling, and containing blood. This applies to the myocardial wall as well as to the vessel wall. Myocardial wall properties are affected in a positive inotropic sense by, for example, β-adrenergic drugs, the sympathetic nervous system (e.g., during exercise), or recovery from compromised myocardial perfusion. In a negative sense the properties are influenced by β- or calcium-channel blockers, or by ischemic conditions caused by, for example, partial or total coronary occlusion. Arterial wall properties are affected by hypertension and advanced age (increasing stiffness), aneurisms, deposition of atherosclerotic plaques, and changes in vascular components such as smooth muscle. To measure these wall properties, it is not sufficient merely to visualize the cavity wall, notwithstanding the very sophisticated levels at which some of the imaging techniques, such as magnetic resonance imaging (MRI) and intravascular ultrasound, have arrived. Assessing dynamic wall properties requires measuring stress-strain relations or, at least, the simultaneous registration of intracavity blood pressure and dimensions. The latter could be vessel diameter or crosssectional area, or, in case of the heart, intraventricular cross-sections or volume, preferably accompanied by wall thickness. This chapter will discuss the methods developed to obtain these dimensions in vivo together with pressure, both in arteries and the ventricle, which has led to pressuredimension relations not previously available. “Translating” these relationships to actual stress-strain relations in the aortic and myocardial wall respectively requires application of mathematical models that have long been available. Moreover, our techniques did not allow for assessment of wall thickness, required in these calculations. For both of these reasons, no attempts have been made to assess wall properties in terms of these stress-strain relations.

Keywords

  • Stroke Volume
  • Wall Property
  • Parallel Conductance
  • Contractile Performance
  • Conductance Catheter

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1744-2_14
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1744-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Applegate RJ, Cheng CP, Little WC. Simultaneous conductance catheter and dimension assessment of left ventricle volume in the intact animal. Circulation 1990;81:638–648.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Baan J. Transverse Impedance of Arteries: Animal Experiments Related to Wave Transmission Theory. Philadelphia: University of Pennsylvania; 1970. Doctoral thesis.

    Google Scholar 

  3. Baan J, Aouw Jong TT, Kerkhof PLM, Moene RJ, Van Dijk AD, Van Der Velde ET, Koops J. Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res. 1981;15:328–334.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Baan J, Iwazumi T, Szidon JP, Noordergraaf A. Intravascular area transducer measuring dynamic local distensibility of the aorta. J Appl Physiol. 1971;31:499–503.

    PubMed  CAS  Google Scholar 

  5. Baan J, Szidon JP, Noordergraaf A. Dynamic local distensibility of living arteries and its relation to wave transmission. Biophys J. 1974;14:343–361.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Baan J, Van Der Velde ET. Sensitivity of left ventricular end-systolic pressure-volume relation to the type of loading intervention in dogs. Circ Res. 1988;62:1247–1258.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Baan J, Van Der Velde ET, De Bruin HG, Smeenk GJ, Koops J, Van Dijk AD, Temmerman D, Senden PJ, Buis B. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation. 1984;70:812–823.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Baan J, Van der Velde ET, Steendijk P. Ventricular pressure-volume relations in vivo. Eur Heart J. 1992;13(Suppl E):2–6.

    PubMed  CrossRef  Google Scholar 

  9. Baan J, Van Der Velde ET, Steendijk P, Koops J. Calibration and application of the conductance catheter for ventricular volume measurement. Automedica. 1989;11:357–365.

    Google Scholar 

  10. Batista RJV, Santos JLV, Takeshita N, Bocchino L, Lima PN, Cunha MA. Partial left ventriculectomy to improve left ventricular function in end stage heart disease. J Cardiac Surg. 1996;11:96–97.

    CrossRef  CAS  Google Scholar 

  11. Baur LHB, Schipperheyn JJ, Baan J, Van Der Laarse A, Buis B, Van Der Wall EE, Manger Cats V, Van Dijk AD, Blokland JK, Frölich M, Bruschke AVG. Influence of angiotensin converting enzyme inhibition on pump function and cardiac contractility in patients with chronic congestive heart failure. Br Heart J. 1991;65:137–142.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Baur LHB, Schipperheyn JJ, Manger Cats V, Van der Wall EE, Baan J, Van Dijk AD, Bruschke AVG. Left ventricular filling after long-term angiotensin converting enzyme inhibition in congestive heart failure. Eur Heart J. 1992;13(Suppl E):52–56.

    PubMed  CrossRef  Google Scholar 

  13. Boltwood Jr CM, Appleyard RF, Glantz SA. Left ventricular volume measurement by conductance catheter in intact dogs: Parallel conductance volume depends on left ventricular size. Circulation. 1989;80:1360–1377.

    PubMed  CrossRef  Google Scholar 

  14. Burkhoff D, Sugiura S, Yue DT, Sagawa K. Contractility-dependent curvilin-earity of end-systolic pressure-volume relations. Am J Physiol (Heart Circ Physiol 21). 1987;252:H1218–H1227.

    CAS  Google Scholar 

  15. Burkhoff D, Van Der Velde ET, Kass DA, Baan J, Maughan WL, Sagawa K. Accuracy of volume measurement by conductance catheter in isolated, ejecting canine hearts. Circulation. 1985;72:440–447.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Cassidy SC, Teitel DF. The conductance volume catheter technique for measurement of left ventricular volume in young piglets. Pediatr Res. 1992;31:85–90.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Corten PMJ, Koops J, Rodrigo FA. Impedance measurements in blood vessels. (Abstr.) Revista Espanola de Cardiologia VI Eur Congr Cardiol, Madrid. 1972.

    Google Scholar 

  18. Dickstein ML, Yano O, Spotnitz HM, Burkhoff D. Assessment of right ventricular contractile state with the conductance catheter technique in the pig. Cardiovasc Res. 1995;29:820–826.

    PubMed  CAS  Google Scholar 

  19. Dodge HT, Sheehan FH. Quantitative angiographic techniques. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, eds. The Heart and Cardiovascular System. Vol. 1. New York: Raven Press; 1986:351–368.

    Google Scholar 

  20. Elzinga G, Noble MIM, Stubbs J. The effect of an increase in aortic pressure upon the inotropic state of cat and dog left ventricles. J Physiol (London). 1977;273:597–615.

    CAS  Google Scholar 

  21. Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston DC, Rankin JS. Linearity of the Frank-Starling relationship in the intact heart: The concept of preload recruitable stroke work. Circulation. 1985;71:994–1009.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Gorcsan J, Denault A, Mandarino WA, Pinsky MR. Left ventricular pressure volume relations with transesophageal echocardiographic automated border detection: comparison with conductance catheter technique. Am Heart J. 1996;131:544–552.

    PubMed  CrossRef  Google Scholar 

  23. Gregg DE. Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res. 1963;13:497–500.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Grossman W, Lorell BH. Diastolic Relaxation of the Heart. Boston: M Nijhoff; 1988.

    Google Scholar 

  25. Hayashi Y, Takeuchi M, Takaoka H, Yokoyama M. Measurement of left ventricular volume by dual field conductance catheter in humans: Comparison with single field conductance catheter. Jpn Circ J. 1996;60:85–95.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Hunter WC. End-systolic pressure as a balance between opposing effects of ejection. Circ Res. 1989;64:265–275.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Karunanithi MK, Michniewicz J, Copeland SE, Feneley MP. Right ventricular preload recruitable stroke work, end-systolic pressure-volume, and dP/dtmax-end-diastolic volume relations compared as indexes of right ventricular contractile performance in conscious dogs. Circ Res. 1992;70:1169–1179.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Kass DA, Marino P, Maughan WL, Sagawa K. Determinants of end-systolic pressure-volume relations during acute regional ischemia in situ. Circulation. 1989;80:1783–1794.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Kass DA, Maughan WL. From“Emax”to pressure-volume relations: a broader view. Circulation. 1988;77:1203–1212.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Klautz RJM, Teitel DF, Steendijk P, Van Bel F, Baan J. Interaction between afterload and contractility in the newborn heart: Evidence of homeometric autoregulation in the intact circulation. J Am Coll Cardiol. 1995;25:1428–1435.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Lankford EB, Kass DA, Maughan WL, Shoukas AA. Does volume catheter parallel conductance vary during the cardiac cycle? Am J Physiol (Heart Circ Physiol 27). 1990;258:H1933–H1942.

    CAS  Google Scholar 

  32. Lew WYW. Time-dependent increase in left ventricular contractility following acute volume loading in the dog. Circ Res. 1988;63:635–647.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Little WC. The left ventricular dPdtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985;56:808–815.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Little WC, Cheng C-P, Peterson T, Vinten-Johansen J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation. 1988;78:736–745.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Mur G, Baan J. Computation of the input impedances of a catheter for cardiac volumetry. IEEE Trans Biomed Eng. 1984;31:448–453.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Odake M, Takeuchi M, Takaoka H, Hayashi T, Yokoyama M. Determination of left ventricular volume using a conductance catheter in the diseased human heart. Eur Heart J. 1992;13(Suppl E):22–27.

    PubMed  CrossRef  Google Scholar 

  37. Park CH, Nishimura K, Kitano M, Matsuda K, Okamoto Y, Ban T. Analysis of right ventricular function during bypass of the left side of the heart by afterload alterations in both normal and failing hearts. J Thorac Cardiovasc Surg. 1996;111:1092–1102.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Pattynama PMT, De Roos A, Van der Velde ET, Lamb HJ, Steendijk P, Baan J. Magnetic resonance analysis of left ventricular pressure-volume relations: Validation with the conductance method at rest and during dobutamine stress. Magn Res Med. 1995;34:728–737.

    CrossRef  CAS  Google Scholar 

  39. Pinsky MR, Perlini S, Solda PL, Pantaleo P, Calciati A, Bernardi L. Dynamic right and left ventricular interactions in the rabbit: Simultaneous measurement of ventricular pressure volume loops. J Crit Care. 1996;11:65–76.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Sakamoto K, Kanai H. Electrical characteristics of flowing blood. IEEE Trans Biomed Eng. 1979;26:686–695.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP. Homeometric autoregulation in the heart. Circ Res. 1960;8:1077–1091.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Schiereck P, Hoefnagel R, De Beer EL, Van Heijst BG, Mosterd WL. Direct recording of EDP-EDV relationship in isolated rat left ventricle: Effect of diastolic crossbridge formation. Cardiovasc Res. 1994;28:715–719.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Schipper IB, Steendijk P, Klautz RJM, Van der Velde ET, Baan J. Cardiac sympathetic denervation does not change the load dependence of the left ventricular end-systolic pressure/volume relationship in dogs. Eur J Physiol (Pflügers Arch). 1993;425:426–433.

    CrossRef  CAS  Google Scholar 

  44. Schreuder JJ, Biervliet JD, Van Der Velde ET, Ten Have K, Van Dijk AD, Meyne NG, Baan J. Systolic and diastolic pressure-volume relationships during cardiac surgery. J Cardiothorac Vasc Anesth. 1991;5:539–545.

    PubMed  CrossRef  CAS  Google Scholar 

  45. Schreuder JJ, Van Der Veen FH, Van Der Velde ET, Delahaye F, Alfieri O, Jegaden O, Lorusso R, Jansen JRC, van Ommen V, Finet G, Wellens HJJ. Beat to beat analysis of left ventricular pressure-volume relation and stroke volume by conductance catheter and aortic modelflow in cardiomyoplasty patients. Circulation. 1995;91:2010–2017.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Schreuder JJ, Van Der Veen FH, Van Der Velde ET, Delahaye F, Alfieri O, Jegaden O, Lorusso R, Jansen JRC, Hoeksel SAAP, Finet G, Volterrani M, Carello OS, Kaulbach HG, Baan J, Wellens HJJ. Left ventricular pressure-volume relationships pre-and post-cardiomyoplasty in heart failure patients. Circulation. 1997 (in press).

    Google Scholar 

  47. Solda P, Perlini S, Piepoli M, Grandi A, Paroni G, Barzizza F, Finardi G, Bernardi L. Measuring left ventricular dimensions by conductance catheter in the rabbit. Eur Heart J. 1990;11:925–935.

    PubMed  CAS  Google Scholar 

  48. Stamato TM, Swarc RS, Benson LN. Measurement of right ventricular volume by conductance catheter in closed-chest pigs. Am J Physiol (Heart Circ Physiol 38). 1995;269:H869–H876.

    CAS  Google Scholar 

  49. Steendijk P, Van der Velde ET, Baan J. Single and dual excitation of the conductance-volume catheter analyzed in a spheroidal mathematical model of the canine left ventricle. Eur Heart J. 1992(Suppl E);13:28–34.

    PubMed  CrossRef  Google Scholar 

  50. Steendijk P, Van Der Velde ET, Baan J. Left ventricular stroke volume by single and dual excitation of the conductance catheter in dogs. Am J Physiol (Heart Circ Physiol). 1993;264:H2189–H2207.

    Google Scholar 

  51. Suga H, Sagawa K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 1974;35:117–126.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Suga H, Sagawa K, Demer L. Determinants of instantaneous pressure in canine left ventricle: Time and volume specification. Circ Res. 1980;46:256–263.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Szwarc RS, Mickleborough LL, Mizuno S, Wilson GJ, Liu P, Mohamed S. Conductance catheter measurement of left ventricular volume in the intact dog: Parallel conductance is independent of left ventricular size. Cardiovasc Res. 1994;28:252–258.

    PubMed  CrossRef  CAS  Google Scholar 

  54. Van der Linden LP, Van der Velde ET, Van Houwelingen HC, Bruschke AVG, Baan J. Determinants of end-systolic pressure during different load alterations in the in-situ left ventricle. Am J Physiol (Heart Circ Physiol 36). 1994;267:H1895–H1906.

    Google Scholar 

  55. Van der Velde ET, Van Dijk AD, Steendijk P, Diethelm L, Chagas T, Glantz SA, Baan J. LV segmental volume by conductance catheter and cine CT. Eur Heart J. 1992;13(Suppl E):15–21.

    PubMed  CrossRef  Google Scholar 

  56. Van Der Velde ET, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J. Nonlinearity and afterload sensitivity of the end-systolic pressure-volume relation of the canine left ventricle in vivo. Circulation. 1991;83:315–327.

    PubMed  CrossRef  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baan, J. (1998). Measurement and Applications of Arterial and Ventricular Pressure-Dimension Relationships in Animals and Humans. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive