Skip to main content

Ventricular Shape: Spherical or Cylindrical?

  • Chapter

Abstract

It has been a long time since Harvey, in 1628, understood that blood flows in a circle. Actually, he only postulated the capillaries (18). Concerning the forces that support flow, he only allowed the vis a tergo without the vis a fronte. It was only 200 years later (in 1843) that Purkinje understood both these last-mentioned forces and recognized the systolic contribution to filling of the ventricles (39).

Keywords

  • Left Ventricle
  • Endocardial Surface
  • Athletic Group
  • Isovolumetric Contraction
  • Large Ellipsoid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1744-2_10
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1744-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baevsky RM. Ballistocardiography in weightlessness. Med Razgl 1991; 30(Suppl 2):41–42.

    Google Scholar 

  2. Best CH, Taylor NB. The Physiological Basis of Medical Practice. 5th ed. London: Bailliere, Tindall &Cox; 1950:246.

    Google Scholar 

  3. Boehme W. Über den aktiven Anteil des Herzens an der Forderung des Venenblutes. Ergebnisse der Physiologie. Band 38. In: Ascher L, Butenandt A, Lendle L, Rein H. Munich: Verlag von J.F. Bergmann; 1936:251–338.

    Google Scholar 

  4. Bragason JA, Ray G. Functional imaging of hemodynamic parameters to identify ischemic left ventricle. Ann Int Conf. IEEE/EMBS. 1990;12(2):722–723.

    Google Scholar 

  5. Burch GE, Ray CT, Cronvich JA. Certain mechanical peculiarities of the human cardiac pump in normal and diseased states. Circulation. 1952;5:504–513.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Clark RW, Peterson NS, Campbell KB. Animated left ventricular images coupled to E(t) performance models. In: Anlikeer M, Proceedings of the 7th International Conference of the Cardiovascular System Dynamics Society ZUOZ (Switzerland) 1986. Session 1. Heart muscle modelling) Zurich: Institut für Biomedizinische Technik der Universität und ETH Zürich; 1986.

    Google Scholar 

  7. Drexler M, Erbel R, Muller U, Wittlich N, Mohr-Kahaly S, Meyer J. Measurement of intracardiac dimensions and structures in normal young adult subjects by transoesophageal echocardiography. Am J Cardiol 1990(65):1491–1496;1990.

    CrossRef  Google Scholar 

  8. Drzewiecki G, Li JK-J. A relationship between ventricular hypertrophy and reduced myocardial contractility. Proceedings of the 5th World Congress on Noninvasive Cardiovascular Dynamics. Piscataway: Rutgers University; 1993.

    Google Scholar 

  9. Feigenbaum RM. Echocardiography. 3rd ed., Philadelphia: Lea &Febiger; 1981.

    Google Scholar 

  10. Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodelling after myocardial infarction. Circulation. 1993;87:755–763.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Gauer OH. Kreislauf des Blutes. In: Landois L. Rosemann R., ed. Lehrbuch der Physiologie des Menschen. Aufl 28. Band 1. Munich: Urban &Schwarzenberg; 1960:65–186.

    Google Scholar 

  12. Goldstein S. Modifying the processes of remodelling: The effects of ACE-inhibition in heart failure. In: The Barcelona Report: Reports from the X1Vth Congress of the European Society of Cardiology, Barcelona. Basel: Hoffmann-La Roche Limited; 1992:2.

    Google Scholar 

  13. Gorcsan J III, Denault A, Gasior TA, Mandarino WA, Kancel MJ, Deneault LG, Hattler BG, Pinski MR. Rapid estimation of left ventricular contractility from endsystolic relations by echocardiographic automated border detection and femoral arterial pressure. Anesthesiology. 1994;81(3):554–562.

    CrossRef  Google Scholar 

  14. Gorcsan J III, Gasior TA, Mandarino WA, Denault LG, Hattler BG, Pinsky MR. On-line estimation of changes in left ventricular stroke volume by transesophageal echocardiographic automated border detection in patients undergoing coronary artery bypass grafting. Am J Cardiol. 1993;72:721–727.

    PubMed  CrossRef  Google Scholar 

  15. Gorcsan J III, Gasior TA, Mandarino WA, Deneault LG, Hattler BG, Pinsky MR. Assessment of the immediate effects of cardiopulmonary bypass on left ventricular performance by on-line pressure-area relations. Circulation, 1994;89(1):180–190.

    PubMed  CrossRef  Google Scholar 

  16. Gorcsan J III, Lazar JM, Schulman DS, Follansbee WP. Comparison of left ventricular function by echocardiographic automated border detection and by radionuclide ejection fraction. Am J Cardiol. 1993;72:810–815.

    PubMed  CrossRef  Google Scholar 

  17. Gorcsan J III, Romand J, Mandarino WA, Deneault LG, Pinsky MR. Assessment of left ventricular performance by on-line pressure-area relations using echocardiographic automated border detection. JACC. 1994;23(1):242–252.

    PubMed  Google Scholar 

  18. Harvey W. Exercitatio Anatomica de Motu Cordis et Sanguinis Animalibus. Frankfurt: Sumptibus Gulielmi Fitzeri; 1628.

    Google Scholar 

  19. Hermann H. La force du coeur. In: Roger GH, Binet L, eds. Masson: Traité de Physiologie; 1932:78.

    Google Scholar 

  20. Horn HR, Teichholz LE, Cohn PF, Herman MV, Gorlin R. Augmentation of Left Ventricular Contraction Pattern in Coronary Artery Disease by an Inotropic Catecholamine: The Epinephrine Ventriculogram. Boston: Cardiovascular division, Department of Medicine, Peter Bent Brigham Hospital and Harvard Medical School; 1973.

    Google Scholar 

  21. Jones CJH, Raposo L, Gibson DG. Functional importance of the long axis dynamics of the human ventricle. Br Heart J. 1990;63:215–220.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Juznic G. Vergleichende Untersuchungen über die mechanische Herzleistung bei Kleintieren und beim Menschen. Bonn: Universität Bonn (Bundesrepublik); 1964. Thesis.

    Google Scholar 

  23. Juznic G, Bardorfer I, Pecar J, Peterec D. A positive feed-back mechanism enhancing the heart beat. Proceedings of the 11th Conference 1EEE/EMBS. 1989:130–131.

    Google Scholar 

  24. Juznic G, Juznic SCJE, Knap B, Li JKJ, Drzewiecki G, Noordergraaf A. The endocardial surface of the left ventricule and its cylindricality. J Cardiovasc Diagn Proc. 1996;13:41–46.

    Google Scholar 

  25. Juznic G, Juznic SCJE, Knap B. The inner surface of left ventricle: A new noninvasive parameter of left ventricular function. Biomed Tech. 1992;37:116–118.

    Google Scholar 

  26. Juznic G, Knap B, Juznic SCJE, Peterec D. The inner surface of left ventricle as an indicator of its function. In: Proceedings 5th World Congress on Noninvasive Cardiodynamics. Piscataway: Rutgers University; 1993.

    Google Scholar 

  27. Juznic G, Knap B, Juznic SCJE, Peterec D. The inner surface of left ventricle as an indicator of its function. In: Proceedings of the 15th Annual International Conference of the IEEE/EMBS Society; San Diego: IEEE Press, NY; 1993:1852–1854.

    Google Scholar 

  28. Juznic G, Peterec D, Jagodic A. Further observations on modelling of the cardiovascular function in the electrical model. Bibl Cardiol 1979;37:195–208.

    PubMed  Google Scholar 

  29. Juznic G, Knap B, Juznic SCJE, Pecar J. Left ventricle surface: Its physiological significance. Proceedings of the 13th Annual Conference of the IEEE/EMBS. Society: IEEE Press, NY; 1991:2075–2076.

    Google Scholar 

  30. Juznic G, Knap B, Juznic SCJE, Pecar J. The indicative value of the inner surface of the left ventricle versus its compliance. Med Razgl 1991;30(Suppl 2):11–19.

    Google Scholar 

  31. Kantrowitz NE, Schnittger I, Schwarzkopf A, Fitzgerald PJ, Popp RL. Rapid, semiautomated technique for estimating left ventricular volume. Am Heart J. 1983;106:521–527.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Knap B, Juznic G, Juznic S. “Cylindricality”as a mechanism of quality of left ventricle. Med Razg. 1996;35:213–220.

    Google Scholar 

  33. Knap B, Juznic SCJE, Juznic G, Drzewiecki G, Li JK.-J, Noordergraaf A. Cylindricality. A shape index for detecting the geometry of the left ventricle. Proceeding of the 14th European Conference of non-invasive cardiology. Cambridge, England: Abstract; 1996;31.

    Google Scholar 

  34. Knap B, Juznic S, Juznic G, Drzewiecki G, Li JJ-K, Noordergraaf A. Cylindricality (CYL) as a new qualitative and quantitative index of the geometry of the left ventricle in health and disease. First International Echo Lisbon Summit Oct. 3-5, Sintra, Portugal, 1996. Abstracts Book Vol. Best Abstract; 1996.

    Google Scholar 

  35. Landois-Rosemann H-U, ed. Lehrbuch der Physiologie des Menschen. Aufl. 28. Band 1. Munich: Urban &Schwarzenberg; 1960.

    Google Scholar 

  36. Nikolic SD, Yellin EL, Dahm M, Pajaro O, Frater RWM. Relationship between diastolic shape (eccentricity) and passive elastic properties in canine left ventricle. Am J Physiol 259 Heart Circ Physiol. 1990;28:H457–H463.

    Google Scholar 

  37. Nixon JV, Saffer SI, Lipscomb K, Blomqvist CG. Three-dimnensional echoventriculography. Am Heart J. 1983;106:435–443.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Parmley WW, Talbot L. The heart as a pump. In: Berne RM, Sperelakis N, Geiger SR, eds. Handbook of Physiology. Section 2. Vol. I. Bethesda, MD: American Physiology Society.

    Google Scholar 

  39. Purkinje JE. Ueber die Saugkraft des Herzens. Jahresbericht der schlesichen Gesellschaft fur vaterlanische Kultur. Breslau; 1843:157–164.

    Google Scholar 

  40. Rankin JS, McHale PA, Arentzen CE, Ling D, Greenfield JC Jr, Anderson RW. The three-dimensional dynamic geometry of the left ventricle in conscious dog. Circ Res. 1976;39:304–313.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Sakamoto T. Echo assessment of left ventricular diastolic function invited contribution. Proceedings of the 14th European Conference of the International Society of Noninvasive Cardiology, 18th–21st September 1996, Cambridge, England.

    Google Scholar 

  42. Sandier H, Ghista DH. Mechanical and dynamic Implications of dimensional measurements of the left ventricle. Fed Proc 1969;28:1344–1350.

    Google Scholar 

  43. Schmailzl KJG, Ormerod O. Ultrasound in Cardiology. Oxford: Blackwell Science; 1994.

    Google Scholar 

  44. Selkurt EE, Bullard RW. The heart as a pump: Mechanical correlates of cardiac activity. In: Selkurt EE, ed. Physiology. 3rd ed., Boston: Little, Brown; 1971:275–295.

    Google Scholar 

  45. Streeter D. Gross morphology and fiber geometry of the heart. In: Berne RM, Sperelakis N, Geiger SR, eds. Handbook of Physiology. Section 2. Vol. 1; 1979:61–112.

    Google Scholar 

  46. Tanaka K, Joshimura T, Sumida S, Mitsuzono R, Tanaka S, Konishi Y, Watanabe H, Yamada T, Maeda K. Transient responses in cardiac function below, at, and above anaerobic threshold. Eur J Appl Physiol. 1986;55:356–361.

    CrossRef  CAS  Google Scholar 

  47. Tigerstedt R. Physiologie des Kreislaufes. Vol. 1. Berlin: de Gruyter; 1921.

    CrossRef  Google Scholar 

  48. Tischler MD, Niggel J, Borowski DT, LeWinter, M. Relation between left ventricular shape and exercise capacity in patients with left ventricular dysfunction. J Am Coll Cardiol. 1993;22:751–757.

    PubMed  CrossRef  CAS  Google Scholar 

  49. Weyman AE. Cross-sectional echocardiography. Philadelphia: Lea &Febiger; 1982:98.

    Google Scholar 

  50. Wiggers CJ, Physiology in health and disease. Philadelphia: Lea &Febiger; 1949.

    Google Scholar 

  51. Wilkins GT, Southern JF, Choong CY, Thomas JD, Fallon JT, Guyer DE, Weyman AE. Correlation between echocardiographic endocardial surface mapping of abnormal wall motion and pathologic infarct size in autopsied hearts. Circulation. 1988;77(5):978–987.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Juznic, S.C.J.E., Juznic, G., Knap, B. (1998). Ventricular Shape: Spherical or Cylindrical?. In: Analysis and Assessment of Cardiovascular Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1744-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1744-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7261-8

  • Online ISBN: 978-1-4612-1744-2

  • eBook Packages: Springer Book Archive