Linear elastic behaviour of flaws: Purely elastic treatment

  • Dominique P. Miannay
Part of the Mechanical Engineering Series book series (MES)

Abstract

We consider in this chapter an isotropic homogeneous continuum in which there is a geometric discontinuity at rest. The discontinuity is also said to be static or stationary and is subjected to an increasing load. The case of the discontinuity in motion will be treated afterwards.

Keywords

Fatigue Brittle Radon Rounded Univer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Neuber. “Kerbspannungslehre,” 2nd Ed., Springer, Berlin (1959), translated under the title “Theory of notch stresses,” 2nd Ed., Springer, Berlin (1958).Google Scholar
  2. 2.
    G. N. Savin. “Stress concentration around holes,” Pergamon Press, London (1969).Google Scholar
  3. 3.
    R. E. Peterson. “Stress concentration design factors,” John Wiley and Son, N.Y., (1953).Google Scholar
  4. 4.
    C. E. Inglis. “Stresses in a plate due to the presence of cracks and sharp corners,” Trans.Nay.Arch., 60 pp. 219–241 (1913).Google Scholar
  5. 5.
    V. Weiss. “Fracture,” Liebowitz Ed., Vol. III, pp. 227— (1971).Google Scholar
  6. 6.
    A. A. Griffith. “The phenomena of rupture and flow in solids,” Philosophical Transactions. Roy. R. Soc., Series A, Vol. 221, pp. 163–198 (1920).Google Scholar
  7. 7.
    M. L. Williams. “On the stress distribution at the base of a stationary crack,” J. Appl. Mech., 24 pp. 109–114 (1957).Google Scholar
  8. 8.
    G. R. Irwin. “Analysis of stresses and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24 pp. 361–364 (1957).Google Scholar
  9. 9.
    A. H. Hult and F. A. McClintock. “Elastic-plastic stress and strain distribution around sharp notches under repeated shear,” Actes du Xleme Congrès International de Mécanique Appliquée, pp. 51–58 (1957).Google Scholar
  10. 10.
    P. C Paris and G. C. Sih. “ Stress analysis of cracks,” in “Fracture toughness testing and its applications,” A.S.T.M., S.T.P. n. 381, pp. 30–83 (1965).Google Scholar
  11. 11.
    H. Tada, P. C. Paris, and G. R. Irwin. “The stress analysis of cracks handbook,” 2nd Ed., Paris Productions, Inc., St. Louis, (1985).Google Scholar
  12. 12.
    G. C. Sih. “Handbook of stress-intensity factors for researchers and engineers,” Institute of fracture and Solid Mechanics, Lehig University, Bethlehem, Pennsylvania 18055, (1973).Google Scholar
  13. 13.
    D. P. Rooke and D. J. Cartwright. “Compendium of stress intensity factors,” Her Majesty’s Stationary Office, London (1976).Google Scholar
  14. 14.
    Y. Murakami. “Stress intensity factors handbook,” Pergamon Press, N.Y, Vol.1 and Vol.2, (1987), Vol.3, (1992).Google Scholar
  15. 15.
    B. A. Bilby, G. E Cardew and I. C. Howard. “Stress intensity factors at the tip of kinked and forked cracks,” in “Fracture 1977,” D. M. R. Taplin Ed., University of Waterloo Press, Vol. 3, pp. 197–200 (1977).Google Scholar
  16. 16.
    M. Creager and P. C. Paris. “Elastic field equations for blunt cracks with reference to stress corrosion cracking,” Int. J. of Fract. Mech., 3, pp. 247–252 (1967).Google Scholar
  17. 17.
    A.S.T.M.designation E 399–90: “Standard test method for plane-strain fracture toughness of metallic materials,” American Society for Testing and Materials, Philadelphia (1990).Google Scholar
  18. 18.
    H. F. Bueckner. “A novel principle for the computation of stress intensity factors,” Zeitschrift fiir Angewandte Mathematik und Mechanik50 pp 529–546 (1970).Google Scholar
  19. 19.
    J. R. Rice. “Some remarks on elastic crack-tip stress fields,” Int. J Solids Structures, 8 pp. 751–758 (1972).CrossRefGoogle Scholar
  20. 20.
    P. C Paris, R. M. McMeeking and H. Tada. “The weight function method for determining stress intensity factors,” in “Cracks and fracture,” ASTM STP 601, pp. 471–489 (1976).Google Scholar
  21. 21.
    P. S. Leevers and J. C. Radon. “Inherent stress biaxiality in various fracture specimen geometries,” Int. J. Fracture, 19 pp. 311–325 (1982).CrossRefGoogle Scholar
  22. 22.
    S. G. Larsson and A. J. Carlsson. “Specimen influence in crack tip yielding,” J. Mech. Phys. Sol., 21 pp. 263–277 (1973).CrossRefGoogle Scholar
  23. 23.
    A. P. Kfouri. “Some evaluations of the elastic T term using Eshelby’s method,” Int. J. Fract., 30 pp. 301–315 (1986).CrossRefGoogle Scholar
  24. 24.
    T. L. Sham. “The determination of the elastic T-term using higher order weight functions,” Int. J. Fract., 48 pp. 81–102 (1991).CrossRefGoogle Scholar
  25. 25.
    B. A. Bilby, G. E. Cardew, M. R. Goldthorpe, and I. C. Howard. “A finite element investigation of the effect of specimen geometry on the fields of stress and strain at the tips of stationary cracks’ in ”Size Effects in Fracture,“ Mechanical Engineering Publications Limited, London, pp. 37–46 (1986).Google Scholar
  26. 26.
    N. P. O’Dowd and C. Fong Shih. “Family of crack-tip fields characterised by a Triaxiality parameter. 1.Structure of fields,” J. Mech. Phys. Solids, 39 pp. 989–1015 (1991).CrossRefGoogle Scholar
  27. 27.
    F. Erdogan and G. C. Sih. “On the crack extension in plates under plane loading and transverse shear,” Journal of Basic Engineering, 85 pp. 519–527 (1963).CrossRefGoogle Scholar
  28. 28.
    G. C. Sih. “Strain-energy-density factor applied to mixed mode crack problems,” International Journal of Fracture, 10, pp. 305–322 (1974).CrossRefGoogle Scholar
  29. See the most up-to-date synthesis in the literature.Google Scholar
  30. 30.
    J. C. Newman, Jr. and I. S. Raju. “An empirical stress intensity factor equation for surface cracks,” Eng. Fract. Mech., 15, pp. 185–192 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Dominique P. Miannay
    • 1
  1. 1.Départment d’Évaluation de Sûreté NucléaireInstitut de Protection et de Sûreté NucléaireFontenay aux RosesFrance

Personalised recommendations