The Pendulous Accelerometer

  • Anthony Lawrence
Part of the Mechanical Engineering Series book series (MES)

Abstract

The pendulous accelerometer, one with an unconstrained single-degree-of-freedom pendulum operated in a closed loop, may well be the most common navigation accelerometer. In this chapter we will consider three types of pendulous accelerometer:
  1. 1.

    a generic pendulous instrument

     
  2. 2.

    the “Q-Flex” design, and

     
  3. 3.

    the silicon micromachined accelerometer.

     

Keywords

Fatigue Quartz Torque Brittle Eter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE STD 337–1972. Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Pendulous, Analog, Torque Balance Accelerometer.Google Scholar
  2. 2.
    IEEE STD 530–1978. Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Digital, Torque Balance Accelerometer.Google Scholar
  3. 3.
    Jacobs, E.D., “Accelerometer,” U.S. Patent 3 702 073, 7 Nov. 1972.Google Scholar
  4. 4.
    Metzger, E.H., “Pendulous force-rebalance accelerometer,” in Ragan, R.R. (Ed.) “Inertial Technology for the Future,” IEEE Trans. on Aerospace and Electronic Systems AES-20, 4, 414–444, 1984.Google Scholar
  5. 5.
    Hamm, J., M. Hafen, B. Ryrko, B. Sinclair, “Development of a dry pendulum accelerometer at LITEF,” DGON Symposium Gyro Technology, Stuttgart, 1982.Google Scholar
  6. 6.
    Shintani, Y., K. Sakuma, H. Yabe, H. Ito, K. Nishikawa, K. Kuramoto, T. Takahashi, “Development of a low cost high performance accelerometer,” DGON Symposium Gyro Technology, Stuttgart, 1983.Google Scholar
  7. 7.
    Kariv, R., “Development of TM-74 TAMAM low cost high performance accelerometer,” DGON Symposium Gyro Technology, Stuttgart, 1986.Google Scholar
  8. 8.
    Nicoli, J.A., “Perfect pendulous linear servo accelerometer model A834,” DGON Symposium Gyro Technology, Stuttgart, 1986. The hyperbolic title should be taken as intent, rather than achievement; the paper describes investigations into error causes.Google Scholar
  9. 9.
    Smithson, T.G., “A review of the mechanical design and development of a high performance accelerometer,” Mechanical Technology of Inertial Devices,Paper C49/87, Proc. Inst. Mech. Eng. (London), 1987.Google Scholar
  10. 10.
    Danielson, M.S., “Compensation of gain temperature coefficient in an optical pick-off for an accelerometer,” U.S. Patent 4 598 586, 8 July 1986.Google Scholar
  11. 11.
    Petersen, K.E., “Silicon as a mechanical material,” Proc. IEEE, 70, 5, pp. 420–457, May 1982.CrossRefGoogle Scholar
  12. 12.
    Angell, J.B., S.C. Terry, P.W. Barth, “Silicon micromechanical devices,” Scientific American, pp. 44–55, April 1983.Google Scholar
  13. 13.
    Satchell, D.W., “Silicon microengineering for accelerometers,” Mechanical Technology of Inertial Devices, Paper C46/87, Proc. Inst. Mech. Eng. (London), 1987.Google Scholar
  14. 14.
    Roylance, L.M., J.B. Angell, “A batch fabricated silicon accelerometer,” IEEE Trans. Electronics Devices, ED-26, pp. 1911–1917, 1979.Google Scholar
  15. 15.
    Youmans, A.P., “Solid state force transducer, support and method of making same,” U.S. Patent 4 050 049, 20 Sept. 1977.Google Scholar
  16. 16.
    Block, B., “Solid state transducer and method of making same,” U.S. Patent 4 071 838, 31 Jan 1978.Google Scholar
  17. 17.
    Stephens, M.L., Gray, P.R., “Temperature compensated piezoresistive transducer,” U.S. Patent 4 166 269, 28 Aug. 1979.Google Scholar
  18. 18.
    Hansson, J.I., “Silicon accelerometer,” U.S. Patent 4 553 436, 19 Nov. 1985.Google Scholar
  19. 19.
    Lawrence, A.W., “A microlMU using advanced inertial sensors,” Proc. 14th Guidance Test Symposium, Holloman AFB, Oct. 1989.Google Scholar
  20. 20.
    Blanco, J., Geen, J., “Micromachined inertial sensor development at Northrop,” ION, Proc. 49th Annual Mtg., Cambridge, MA, June 21–23,1993.Google Scholar
  21. 21.
    Lefort, O., “A miniature, low cost, silicon micromachined servo accelerometer,” DGON Symposium Gyro Technology, Stuttgart, 1988.Google Scholar
  22. 22.
    Barbour, N., et al., “Micromechanical silicon instrument and systems development at Draper Laboratories,” AIAA Guidance, Navigation, and Control Conference, San Diego, CA, July 29–31, 1996.Google Scholar
  23. 23.
    Klass, Philip J., “Fiber-optic gyros now challenging laser gyros,” Aviation Week & Space Technology, pp. 62–64, 1 July 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Anthony Lawrence
    • 1
  1. 1.LunenbergUSA

Personalised recommendations