Skip to main content

Elastic Freedom in Cellular Solids and Composite Materials

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 99))

Abstract

The question of how much freedom is to be incorporated in a continuum theory must ultimately be decided by experiment. There are several theories which describe behavior of materials. An early uniconstant theory was proposed based on atomic interaction theory; it was abandoned since it predicted a Poisson’s ratio of 1/4 for all materials. The elasticity theory currently accepted as classical allows Poisson’s ratios in isotropic materials in the range -1 to 1/2. Common materials exhibit a Poisson’s ratio from 1/4 to nearly 1/2. We have prepared materials with a Poisson’s ratio as small as -0.8. Deformation mechanisms in these materials include relative rotation of micro-elements, and non-affine micro-deformation. The relation between properties and structure is exploited to prepare viscoelastic composites with high stiffness combined with high damping. Generalized continuum theories exist with more freedom than classical theory. For example, in Cosserat elasticity there are characteristic lengths as additional engineering elastic constants. Recent experimental work discloses a variety of cellular and fibrous materials to exhibit such freedom, and the characteristic lengths have been measured. In hierarchical solids structural elements themselves have structure. Several examples of natural structural hierarchy are considered, with consequences related to optimality of material properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hashin Z., and Shtrickman, S., “A variational approach to the theory of the elastic behavior of multiphase materials”, J. Mech. Phys. Solids, 11, 127–140, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hashin, Z., “Analysis of composite materials-a survey”, J. Applied Mechanics, 50,481–505,1983.

    Article  MATH  Google Scholar 

  3. Fung, Y.C., Foundation of Solid Mechanics, Prentice-Hall, Englewood, NJ, p.353, 1968.

    Google Scholar 

  4. Schajer, G.S. and Robertson, C.I., “Mechanical behaviour of cellular structures”, project report, Pembroke college, Cambridge University, 1974.

    Google Scholar 

  5. Gibson, L.J., Ashby, M.F., Schajer, G.S. and Robertson, C.I., “The mechanics of two dimensional cellular solids”, Proc. Royal Society London, A382, 25–42, 1982.

    Google Scholar 

  6. Kolpakov, A. G., “On the determination of the averaged moduli of elastic grid-works”, Prikl. Mat. Mekh, 59, 969–977, 1985.

    MathSciNet  Google Scholar 

  7. Almgren, R.F., “An isotropic three dimensional structure with Poisson’s ratio-1”, J. Elasticity, 15, 427–430, 1985.

    Article  Google Scholar 

  8. Warren, T.L., “Negative Poisson’s ratio in a transversely isotropic foam structure”, J. Appl. Physics, 67, 7591–7594, 1990.

    Article  Google Scholar 

  9. Gibson, L.J., Ashby, M.F., Cellular solids, Pergamon, 1988.

    MATH  Google Scholar 

  10. Lakes, R.S., “Foam structures with a negative Poisson’s ratio”, Science, 235, 1038–1040,1987.

    Article  Google Scholar 

  11. Friis, E.A., Lakes, R.S., and Park, J.B., “Negative Poisson’s ratio polymeric and metallic materials”, Journal of Materials Science, 23, 4406–4414, 1988.

    Article  Google Scholar 

  12. Choi, J.B. and Lakes, R.S., “Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio”, J. Materials Science, 27, 5373–5381, 1992.

    Google Scholar 

  13. Choi, J.B. and Lakes, R.S., “Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio”, J. Materials Science, 27, 4678–4684, 1992.

    Article  Google Scholar 

  14. Caddock, B.D. and Evans, K.E., “Microporous materials with negative Poisson’s ratio: I. Microstructure and mechanical properties”, J. Phys. D., Appl. Phys., 22, 1877–1882, 1989.

    Article  Google Scholar 

  15. Evans, K.E. and Caddock, B.D., “Microporous materials with negative Poisson’s ratio: II. Mechanisms and interpretation”, J. Phys. D., Appl. Phys., 22,1883–1887,1989.

    Article  Google Scholar 

  16. Herakovich, C.T., “Composite laminates with negative through-the-thickness Poisson’s ratio”, J. Composite Materials, 18, 447–455, 1985.

    Article  Google Scholar 

  17. Tsai, S.W. and Hahn, H.T., Introduction to composite materials, Technomic, Lancaster PA, 1980.

    Google Scholar 

  18. Miki, M. and Morotsu, Y. “The peculiar behavior of the Poisson’s ratio of laminated fibrous composites”, JSME International Journal, 32, 67–72, 1989.

    Google Scholar 

  19. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 4th ed, Dover, NY, 1944.

    MATH  Google Scholar 

  20. Simmons, G. and Wang, H., Single crystal elastic constants and calculated aggregate properties: a handbook, MIT Press, Cambridge, 2nd ed, 1971.

    Google Scholar 

  21. Milton, G., “Composite materials with Poisson’s ratios close to -1”, J. Mech. Phys. Solids, 40, 1105–1137, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  22. Weiner, J.H., Statistical Mechanics of Elasticity, J. Wiley, NY, 1983.

    MATH  Google Scholar 

  23. Timoshenko, S.P., History of Strength of Materials, Dover, NY, 1983.

    Google Scholar 

  24. Lakes, R.S., “Negative Poisson’s ratio materials”, Science, 238, 551, 1987.

    Article  Google Scholar 

  25. Burns, S., “Negative Poisson’s ratio materials”, Science, 238, 551, 1987.

    Article  Google Scholar 

  26. Lakes, R.S., “Deformation mechanisms of negative Poisson’s ratio materials: structural aspects”, J. Materials Science, 26, 2287–2292, 1991.

    Article  Google Scholar 

  27. Wojciechowski, K.W., “Two-dimensional isotropic system with a negative Poisson ratio”, Physics Letters A, 137, 60–64, 1989.

    Article  Google Scholar 

  28. Bathurst, R.J. and Rothenburg, L., “Note on a random isotropic granular material with negative Poisson’s ratio”, Int. J. Engng. Sci, 26, 373–383, 1988.

    Article  MATH  Google Scholar 

  29. Rothenburg, L., Berlin, A.A. and Bathurst, R.J., “Microstructure of isotropic materials with negative Poisson’s ratio”, Nature, 354, 470–472, 1991.

    Article  Google Scholar 

  30. Chen, C.P. and Lakes, R.S., “Holographic study of conventional and negative Poisson’s ratio metallic foams: elasticity, yield, and micro-deformation”, J. Materials Science, 26, 5397–5402, 1991.

    Article  Google Scholar 

  31. Evans, K.E., Nkansah, M.A., Hutchinson, I.J.,and Rogers, S.C., “Molecular network design”, Nature, 353, 124, 1991.

    Article  Google Scholar 

  32. Lakes, R.S., “Advances in negative Poisson’s ratio materials”, Advanced Materials (Weinheim, Germany), 5, 293–296, 1993.

    Google Scholar 

  33. Chen, C.P. and Lakes, R.S., “Dynamic wave dispersion and loss properties of conventional and negative Poisson’s ratio polymeric cellular materials”, Cellular Polymers, 8, 343–359, 1989.

    Google Scholar 

  34. Choi, J.B.and Lakes, R.S., “Design of a fastener based on negative Poisson’s ratio foam”, Cellular Polymers, 10, 205–212, 1991.

    Google Scholar 

  35. Chen, C.P., and Lakes, R.S., Viscoelastic behaviour of composite materials with conventional-or negative-Poisson’s-ratio foam as one phase”, Journal of Materials Science, 28, 4288–4298, 1993.

    Article  Google Scholar 

  36. Lee, E.H., “Stress analysis in viscoelastic bodies”, Q. Appl. Math, 13: 183–190, 1955.

    MATH  Google Scholar 

  37. Christensen, R.M., Theory of Viscoelasticity, Academic, NY, second edition, 1982.

    Google Scholar 

  38. Brodt, M. and Lakes, R.S., “Composite materials which exhibit high stiffness and high viscoelastic damping”, J. Composite Materials, 29, 1823–1833, 1995.

    Article  Google Scholar 

  39. Gibiansky, L.V. and Lakes, R.S., “Bounds on the complex bulk modulus of a two-phase viscoelastic composite with arbitrary volume fractions of the components”, Mechanics of Materials, 16: 317–331, 1993.

    Article  Google Scholar 

  40. Brodt, M., Cook, L.S., and Lakes, R.S., “Apparatus for measuring viscoelas-tic properties over ten decades: refinements”, Review of Scientific Instruments, 66(11), 5292–5297, 1995.

    Article  Google Scholar 

  41. Timoshenko, S.P., History of Strength of Materials, Dover, 1983.

    Google Scholar 

  42. Sokolnikoff, I.S., Mathematical Theory of Elasticity, Krieger, 1983.

    MATH  Google Scholar 

  43. Fung, Y.C., Foundations of Solid Mechanics, Prentice Hall, 1968.

    Google Scholar 

  44. Cosserat, E. and Cosserat, F., Theorie des Corps Deformables, Hermann et Fils, Paris, 1909.

    Google Scholar 

  45. Voigt, W., “Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle”, Abh. Ges. Wiss. Gottingen, 34, 1887.

    Google Scholar 

  46. Aero, E.L. and Kuvshinskii, E.V., “Fundamental equations of the theory of elastic media with rotationally interacting particles”, Fizika Tverdogo Tela, 2, 1399–1409, 1960; Translation, Soviet Physics-Solid State 2, 1272–1281, 1961.

    Google Scholar 

  47. Mindlin, R. D., “Stress functions for a Cosserat continuum”, Int. J. Solids and Structures 1, 265–271, 1965.

    Article  Google Scholar 

  48. Mindlin, R. D. and Tiersten, H.F., “Effect of couple stresses in linear elasticity”, Arch. Rational Mech. Analy, 11, 415–448, 1962.

    MathSciNet  MATH  Google Scholar 

  49. Eringen, A.C., Theory of micropolar elasticity, In Fracture,Vol. 1, 621–729 (edited by H. Liebowitz), Academic Press, 1968.

    Google Scholar 

  50. Nowacki, W., Theory of micropolar elasticity, Poznan, 1970.

    Google Scholar 

  51. Cowin, S.C., “Stress functions for Cosserat elasticity”, Int. J. Solids, Structures, 6, 389–398, 1970.

    Article  MATH  Google Scholar 

  52. Gauthier, R.D. and W.E. Jahsman, “A quest for micropolar elastic constants”, J. Applied Mechanics, 42, 369–374, 1975.

    Article  Google Scholar 

  53. Cowin, S.C. “An incorrect inequality in micropolar elasticity theory”, J. Appl. Math. Phys. (ZAMP) 21, 494–497, 1970b.

    Article  MATH  Google Scholar 

  54. Lakes, R.S., “A pathological situation in micropolar elasticity”, J. Applied Mechanics, 52 234–235 1985.

    Article  Google Scholar 

  55. Krishna Reddy, G.V. and Venkatasubramanian, N.K., “On the flexural rigidity of a micropolar elastic circular cylinder”, J. Applied Mechanics, 45, 429–431, 1978.

    Article  Google Scholar 

  56. Mindlin, R.D., “Effect of couple stresses on stress concentrations”, Experimental Mechanics, 3, 1–7, 1963.

    Article  Google Scholar 

  57. Lakes, R.S. and Benedict, R.L., “Noncentrosymmetry in micropolar elasticity”, International Journal of Engineering Science, 29, 1161–1167, 1982.

    Article  Google Scholar 

  58. Lakhtakia, A., Varadan, V.K., and Varadan, V.V., “Elastic wave propagation in noncentrosymmetric, isotropic media: dispersion and field equations”, J. Applied Physics, 64, 5246, 1988.

    Article  Google Scholar 

  59. Ellis, R.W. and Smith, C.W., “A thin plate analysis and experimental evaluation of couple stress effects”, Experimental Mechanics, 7, 372–380, 1968.

    Article  Google Scholar 

  60. Yang, J.F.C. and Lakes, R.S., “Transient study of couple stress effects in human compact bone”, J. Biomechanical Engineering, 103, 275–279, 1981.

    Article  Google Scholar 

  61. Yang, J.F.C. and R.S. Lakes. “Experimental study of micropolar and couple-stress elasticity in bone in bending”, J. Biomechanics, 15, 91–98, 1982.

    Article  Google Scholar 

  62. Lakes, R.S. and Yang, J.F.C., “Micropolar elasticity in bone: rotation modulus a”, Proceedings 18th Midwest Mechanics Conference, Iowa City, Developments in Mechanics, Vol. 12, p. 239–242, 1983.

    Google Scholar 

  63. Ascenzi, A., Baschieri, P., and Benvenuti, A., “The torsional properties of selected single osteons”, J. Biomechanics, 27, 875–884, 1994.

    Article  Google Scholar 

  64. Lakes, R.S., “On the torsional properties of single osteons”, J. Biomechanics, 28,1409–1410,1995.

    Article  Google Scholar 

  65. Lakes, R.S., “Experimental microelasticity of two porous solids”, Int. J. Solids, Structures, 22, 55–63,1986.

    Google Scholar 

  66. Anderson, W. B. and Lakes, R. S., “Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam”, Journal of Materials Science, 29, 6413–6419, 1994.

    Article  Google Scholar 

  67. Park, H.C. and R.S. Lakes, “Torsion of a micropolar elastic prism of square cross section”, Int. J. Solids, Structures, 23, 485–503, 1987.

    Article  MATH  Google Scholar 

  68. Park, H.C. and R.S. Lakes, “Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent”, J. Biomechanics, 19, 385–397,1986.

    Article  Google Scholar 

  69. Lakes, R.S., Gorman, D. and Bonfield, W., “Holographic screening method for microelastic solids”, J. Materials Science, 20, 2882–2888, 1985.

    Article  Google Scholar 

  70. Lakes, R.S., “Demonstration of consequences of the continuum hypothesis”, Mechanics Monograph, M5, 1–5, 1985.

    Google Scholar 

  71. Lakes, R.S. and Yang, J.F.C., “Concentration of strain in bone”, Proceedings 18th Midwest Mechanics Conference, Developments in Mechanics 12, 233–237, 1983.

    Google Scholar 

  72. Hlavacek, M., “A continuum theory for fibre reinforced composites”, Int. J. Solids and Structures, 11, 199–211, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  73. Hlavacek, M., “On the effective moduli of elastic composite materials”, Int. J. Solids and Structures, 12, 655–670, 1976.

    Article  MATH  Google Scholar 

  74. Herrmann, G. and Achenbach, J.D., “Applications of theories of generalized continua to the dynamics of composite materials”, in Mechanics of Generalized Continua, ed. E. Kröner, Springer Verlag, 1967.

    Google Scholar 

  75. Berglund, K., “Structural models of micropolar media”, in Mechanics of Micropolar Media, edited by O. Bruhn and R.K.T. Hsieh, World Scientific, Singapore, 1982.

    Google Scholar 

  76. Lakes, R.S., “Experimental methods for study of Cosserat elastic solids and other generalized continua”, in Continuum models for materials with microstructure, ed. H. Mühlhaus, J. Wiley, Ch. 1 p.1–22, 1995.

    Google Scholar 

  77. Lakes, R. S., “Materials with structural hierarchy”, Nature, 361, 511–515, 1993.

    Article  Google Scholar 

  78. Loyrette, H. Gustave Eiffel, Rizolli, NY, 1985.

    Google Scholar 

  79. Gibson, L.J. and Ashby, M.F., Cellular solids, Pergamon, Oxford, 1988.

    MATH  Google Scholar 

  80. Katz, J.L., “Hard tissue as a composite material - I. Bounds on the elastic behavior”, J. Biomechanics 4, 455–473, 1971.

    Article  Google Scholar 

  81. Piekarski, K., “Fracture of bone”, J. Appl. Phys. 41, 215–223, 1970.

    Article  Google Scholar 

  82. Lakes, R.S. and Saha, S., “Cement line motion in bone”, Science, 204, 501–503, 1979.

    Article  Google Scholar 

  83. Currey, J., The mechanical adaptations of bones, Princeton University Press, 1984.

    Google Scholar 

  84. Piekarski, K. and Munro, M., “Transport mechanism operating between blood supply and osteocytes in long bones”, Nature, 269, 80–82, 1977.

    Article  Google Scholar 

  85. Katz, J.L., “Anisotropy of Young’s modulus of bone”, Nature, 283, 106–107, 1980.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakes, R. (1998). Elastic Freedom in Cellular Solids and Composite Materials. In: Golden, K.M., Grimmett, G.R., James, R.D., Milton, G.W., Sen, P.N. (eds) Mathematics of Multiscale Materials. The IMA Volumes in Mathematics and its Applications, vol 99. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1728-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1728-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7256-4

  • Online ISBN: 978-1-4612-1728-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics