Skip to main content

Nonlinear Optics in Structures with Dimensional Confinement

  • Chapter
Nonlinear Optical Materials

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 101))

Abstract

The nonlinear optical properties of one dimensional periodic media (“gratings”) are discussed. In particular three aspects are highlighted: the effects of gratings on phase matching conditions in nonlinear conversion processes, how the eigenfunctions of the fields in the grating can enhance the effective nonlinearity, and, finally, effects occurring at frequencies close to the Bragg condition of the grating where the light’s group velocity can be substantially less than the speed of light in the medium without a grating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986), Ch. 17.

    Google Scholar 

  2. G.P. Agrawal, Nonlinear fiber optics (Academic, San Diego, 1989).

    Google Scholar 

  3. R. Kashyap, “Photosensitive optical fibers: devices and applications,” Opt. Fiber Technol. 1, 17–34 (1994).

    Article  Google Scholar 

  4. P.A. Krug, T. Stephens, G. Dhosi, G. Yoffe, F. Ouellette, and P. Hill, “Dispersion compensation over 270 km at 10 Gbit/s using an offset-core chirped fiber grating,” Electron. Lett. 31, 1091–1093 (1995).

    Article  Google Scholar 

  5. V. Mizrahi, P.J. Lemaire, T. Ergodan, and W.A. Reed, “Ultraviolet-laser fabrication of ultrastrong optical-fibre gratings and of germania-doped channel waveguides,” Appl. Phys. Lett. 63, 1727–1729 (1993).

    Article  Google Scholar 

  6. See e.g. D. Marcuse, Theory of dielectric optical waveguides, 2nd Ed. (Academic, Boston, 1991), Ch. 3.

    Google Scholar 

  7. J.E. Sipe, L. Poladian, and C.M. De Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).

    Article  Google Scholar 

  8. H. Kogelnik and C.V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).

    Article  Google Scholar 

  9. C.M. De Sterke and J.E. Sipe, “Gap solitons,” in Progress in Optics, Vol Xxxiii, edited by E. Wolf (North-Holland, Amsterdam, 1994), 203–260.

    Google Scholar 

  10. P.St.J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599 (1991).

    Article  Google Scholar 

  11. R.W. Boyd, Nonlinear optics (Academic, San Diego, 1992).

    Google Scholar 

  12. H.G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).

    Article  Google Scholar 

  13. C.M. De Sterke, D.G. Salinas, and J.E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).

    Article  Google Scholar 

  14. C.M. De Sterke, K.R. Jackson, and B.D. Robert, “Nonlinear coupled mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am B 8, 403–412 (1991).

    Article  Google Scholar 

  15. C.L. Tang and P.P. Bey, “Phase matching in second-harmonic generation using artificial periodic structures,” Ieee J. Quantum Electron qe-9, 9–17 (1973).

    Article  Google Scholar 

  16. J.P. Van Der Ziel and M. Ilegems, “Optical second harmonic generation in periodic multilayer GaAs-Al 0.3 Ga 0.7 As structures,” Appl. Phys. Lett. 28, 437–439 (1976).

    Article  Google Scholar 

  17. M.J. Steel and C.M. De Sterke, “Parametric amplification of short optical pulses in optical fiber Bragg gratings,” Opt. Lett. 21, 420–422 (1996).

    Article  Google Scholar 

  18. M.J. Steel and C.M. De Sterke, “Parametric amplification of short pulses in optical fiber Bragg gratings,” Phys. Rev. E. 54, 4271–4284 (1996).

    Article  Google Scholar 

  19. P.St.J. Russell and J.-L. Archambault, “Field microstructures and temporal and spatial instability of photonic Bloch waves in nonlinear periodic media,” J. Phys. Iii France 4, 2471–2491 (1994).

    Article  Google Scholar 

  20. M.J. Steel and C.M. De Sterke, “Continuous-wave parametric amplification in Bragg gratings,” J. Opt. Soc. Am. B 12, 2445–2452 (1995).

    Article  Google Scholar 

  21. C.M. De Sterke and J.E. Sipe, “Envelope function approach for the electrodynamics of nonlinear periodic structures,” Phys. Rev. A 38, 5149–5165 (1988).

    Article  Google Scholar 

  22. C.M. De Sterke and J.E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).

    Article  Google Scholar 

  23. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic crystals (Princeton, Princeton, 1995).

    Google Scholar 

  24. H.G. Winful, J.H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).

    Article  Google Scholar 

  25. N.D. Sankey, D.F. Prelewitz, and T.G. Brown, “All-optical switching in a nonlinear periodic waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).

    Article  Google Scholar 

  26. H.G. Winful and G.D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982).

    Article  Google Scholar 

  27. C.M. De Sterke and J.E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numerical study,” Phys. Rev. A 42, 2858–2869 (1990).

    Article  Google Scholar 

  28. W. Chen and D.L. Mills, “Gap solitons and nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).

    Article  Google Scholar 

  29. B.J. Eggleton, R.E. Slusher, C.M. De Sterke, P.A. Krug, and J.E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).

    Article  Google Scholar 

  30. A.B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).

    Article  Google Scholar 

  31. A.B. Aceves, J.V. Moloney, and A.C. Newell, “Theory of light-beam propagation at nonlinear interfaces,” Phys. Rev. A 39, 1809–1840 (1989).

    Article  Google Scholar 

  32. N.G.R. Broderick and C.M. De Sterke, “Gap soliton propagation in nonuniform gratings,” Phys. Rev E. 51, 4978–4985 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Sterke, C.M. (1998). Nonlinear Optics in Structures with Dimensional Confinement. In: Moloney, J.V. (eds) Nonlinear Optical Materials. The IMA Volumes in Mathematics and its Applications, vol 101. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1714-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1714-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7253-3

  • Online ISBN: 978-1-4612-1714-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics