Minimal Links in the Cubic Lattice

  • R. Uberti
  • E. J. Janse van Rensburg
  • E. Orlandinit
  • M. C. Tesi
  • S. G. Whittington
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 103)


How many edges are necessary and sufficient to realize two closed simple curves in the cubic lattice forming a link of a given type ? Let this number be the edge number of the link. We show that the minimal edge number of links is subadditive with respect to the connected sum of links. In addition, we prove the existence of an edge index, which is the average number of edges per component under iterated connected sums of links of a given type. The minimal edge numbers of some simple links are estimated using simulated annealing.


Bottom Edge Link Type Closed Simple Curf Reidemeister Move Lattice Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.E. Soteros, D.W. Sumners and S.G. Whittington, Entanglements and Complexity of Graphs in Z 3, Math. Proc. Carob. Phil. Soc., 111 (1992) 75–91.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Y. DiaoMinimal Knotted Polygons on the Cubic Lattice, J. of Knot. Theory and its Ram., 2 (1993) 413–425.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Y. DiaoThe Number of Smallest Knots on the Cubic LatticeJ. Stat. Phys., 74 (1994) 1247–1254.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    J.W. Alexander and G.B. BriggsOn Types of Knotted Curves, Ann. of Math. (2), 28 (1927) 562–586.MathSciNetGoogle Scholar
  5. [5]
    E.J. Janse Van Rensburg and S.D. Promislow, Minimal Knots in the Cubic Lattice, J. of Knot. Theory and its Ram., 4 115–130.Google Scholar
  6. [6]
    J.M. HammersleyThe Number of Polygons on a Lattice, Proc. Camb. Phil. Soc., 57 (1961) 516–523.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    E. Hille, Functional Analysis and Semi-Groups, AMS Colloq. Publ., 31 (1948) (New York: AMS).zbMATHGoogle Scholar
  8. [8]
    J.M. Hammersley and K.W. Morton, Poor Man’s Monte Carlo, J. Roy. Stat. Soc. B, 16 (1954) 23–38.MathSciNetzbMATHGoogle Scholar
  9. [9]
    J.B. Wilker and S.G. Whittington, Extension of a Theorem on Super-Multiplicative Functions, J. Phys. A: Math. Gen., 12 (1979) L245--L247.MathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Kirkpatrick, C.D. Gelatt Jr.andM.P. Vecchi, Optimisation by Simulated Annealing, Science, 220, no. 4598 (1983) 671–680.MathSciNetCrossRefGoogle Scholar
  11. [11a]
    B. Berg and D. Foester, Random Paths and Random Surfaces on a Digital Computer, Phys. Lett., 106B (1981) 323–326.Google Scholar
  12. [11b]
    C. Aragao De Carvalho, S. Caracciolo and J. Frolich, Polymers and g|Φ| 4 Theory in Four Dimensions,Nucl. Phys. B [FS7], 215 (1983) 209–248.CrossRefGoogle Scholar
  13. [12]
    E.J. Janse Van Rensburg and S.G. Whittington, The RFACF Algorithm and Knotted Polygons, J. Phys. A: Math. Gen., 24 (1991) 5553–5567.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [13]
    J.M. HammersleyThe Number of Polygons on a Lattice, Proc. Carob. Phil. Soc., 57 (1961) 516–523.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [14]
    N. Madras and G. Slade, The Self-Avoiding Walk, (Birkhäuser, Boston, 1993).zbMATHGoogle Scholar
  16. [15]
    E.J. Janse Van Rensburg,Lattice Invariants for Knots, In Mathematical Approaches to Biomolecular Structure and Dynamics, Ed J.P. Merirov, K. Schulten and D.W. Sumners, 11–20, Proceedings of the IMA Summer Program in Molecular Biology, July 1994 (Springer-Verlag, New York, 1995).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • R. Uberti
    • 1
  • E. J. Janse van Rensburg
    • 1
  • E. Orlandinit
    • 2
  • M. C. Tesi
    • 3
  • S. G. Whittington
    • 4
  1. 1.Department of Mathematics and StatisticsYork UniversityNorth YorkCanada
  2. 2.Department of Theoretical PhysicsOxford UniversityUK
  3. 3.Mathematical InstituteUniversity of Oxford, OxfordUK
  4. 4.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations