Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 103))

  • 306 Accesses

Abstract

Knots in real physical systems, be they rope or DNA loops, have real physical properties; that is a truism. The behavior of physical knots depends on the topological types of the knots; that is an experimental observation. Mathematical differences between knot types and, more generally, the whole body of knot theory should help explain the physical behavior; that is a hope. If we make the three simplest knots out of similar “rope” having the same lengths Figure 1, we see that one kind of knot seems more “tight” or “compact” than another. Somehow this difference will manifest itself in physical systems and should be predictable from the topology.

The author is supported in part by NSF Grant #DMS9407132.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Adams. B. Brennan, D. Greilsheimer and A. Woo, Stick numbers and compositions of knots and links, J. Knot Theory and its Ramif., to appear.

    Google Scholar 

  2. G. Buck, On the energy and length of a knot, Talk in Special Session on Physical Knot Theory, Amer. Math. Soc.. Iowa City, March 1996.

    Google Scholar 

  3. G. Buck, Random knots and energy: elementary consideration, J. Knot Theory and its Ramif. 3 (1994) (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).

    Google Scholar 

  4. G. Buck and J. Orloff, A simple energy function for knots, Topology and its Appl. 61 (1995), 205–214.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Buck and J. Orloff, Computing canonical conformations of knots, Topology and its Appl. 51 (1993), 246–253.

    MathSciNet  Google Scholar 

  6. K. Brakke (further devel, by J. Sullivan),SURFACE EVOLVER, Geometry Center University of Minnesota, http://www.geom.urnri.edu/software

  7. G. Buck and J. Simon, Knots as dynamical systems, Topology and its Appl. 51 (1993), 229–246.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Buck and J. Simon, Energy and length of knots, Lectures at Knots ‘86, Proc. of summer 1996 Intl. Conf., Tokyo, S. Suzuki (ed.), World Scientific Publ. (1997), 219–234.

    Google Scholar 

  9. G. Buck and J. Simon, Thickness and crossing number of knots, announced in preceding conf., to appear, Topology and its Applications.

    Google Scholar 

  10. N.J. Crisona, R. Kanaar, T.N. Gonzales, E.L. Zechiedrich, E.L. Klippei., and N.R. Cozzarelli, Processive recombination by wild-type Gin and an enhancer-independent mutant. Insight into the mechanisms of recombination and strand exchange, J. Mol. Biol. 243 (1994), 437–457.

    Article  Google Scholar 

  11. Y. DiaoMinimal knotted polygons on the cubic lattice, J. Knot Theory and its Ramif. 2 (1993), 413–425.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Dröge and N.R. CozzarelliRecombination of knotted substrates by Tn3 resolvent, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 6062 6066.

    Article  Google Scholar 

  13. P. Dröge and N.R. Cozzarelli, Topological structure of DNA knots and cat manes, Methods in Enzymology 212 (1992), 120–130.

    Article  Google Scholar 

  14. F.B. Dean, A. Stastak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by escherichia colo topoisomerase I, J. Biol. Chem. 260 (1985), 4975–4983.

    Google Scholar 

  15. T. Deguchi and K. Tsurusaki, A statistical study of random knotting using the Vassiliev invariants, J. Knot Theory and its Ramif. 3 (1994), 321–353 (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).

    Google Scholar 

  16. Y. Diao, K. Ernst, and E.J.J. Vanrensburg, Energies of knots (preprint, 3/95); Knot energies by ropes (preprint 4/96).

    Google Scholar 

  17. D. Dichmann, Y. Li, and J.H. Maddocks, Hamiltonian formulations and symmetries in rod mechanics,Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 1MA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,71–113.

    Google Scholar 

  18. Y. Diao, N. Pippenger, and D.W. Sumners, On random knots,J. Knot Theory and its Ramif, 3 (1994) (reprinted in book Random Knotting and Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).

    Google Scholar 

  19. F.B. Dean, A. Stasiak, T. Koller, and N.R. Cozzarelli, Duplex DNA knots produced by escherichia coli topoisomerase I, J. Biological Chemistry 260 (1985), 4975–4983.

    Google Scholar 

  20. M. Freedman, Z.-X. He, and Z. WangMains energy of knots and unknots, Annals of Math. 139 (1994), 1–50.

    Article  MathSciNet  MATH  Google Scholar 

  21. H.L. Frisch and E. VvassermanChemical topology, J. Am. Chem. Soc. 83 (1961), 3789–3795.

    Article  Google Scholar 

  22. S. Fukuhara, Energy of a knot, A Fete of Topology: Papers Dedicated to Itiro Tamura (Y.T. Matsumoto and S. Morita, ed.), Academic Press, New York, 1988,443–451.

    Google Scholar 

  23. M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1–147 (see p. 113).

    MathSciNet  MATH  Google Scholar 

  24. J.E. Hearst and Y. Shi, The elastic rod provides a model for DNA and its functions, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schuhen, and D.W. Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,59–70.

    Google Scholar 

  25. M. Huang, Univ. Illinois-Chicago,http://www.eecs.uic.eduk- mhuang/research.html, Program for visualizing and energy minimizing knots.

  26. K. Hunt, KED, University of Iowa,http://www.csaiiowa.edubhunti, Program for visualizing, manipulating, and energy minimizing polygonal knots.

  27. E.J. Janse Van Rensburg, Lattice invariants for knots, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,11–20.

    Google Scholar 

  28. E.J. Janse Van Rensburg, E. Orlandini, D.W. Sumners, M.C. Test and S. Whittington, Topology and geometry of biopolymers, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Surnners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,21–37.

    Google Scholar 

  29. E.J. Janse Van Rensburg and S. Whittington, The dimensions of knotted polygons, J. Phys. A: Math. Gen. 24 (1991), 3935–3948.

    Article  Google Scholar 

  30. E.J. Janse Van Rensburg and S. Whittington, The knot probability in lattice polygons, J. Phys. A: Math. Gen 23 (1990), 3573–3590.

    Article  MATH  Google Scholar 

  31. E.J. Janse Van Rensburg and S. Whittington, The BFACF algorithm and knotted polygons, J. Phys. A: Math. Gen. 24 (1991), 5553–5567.

    Article  MATH  Google Scholar 

  32. G.T. Jin and H.S. Kim, Polygonal knots, Jour. Korean Math. Soc. 30 (1993), 371–383.

    MathSciNet  MATH  Google Scholar 

  33. G.T. Jin, Polygon indices and superbridge indices of torus knots and links, preprint 3/96.

    Google Scholar 

  34. R. Kanaar, A. Kuppel, E. Shekhtman, J.M. Dungan, R. Kahmann and N.R. Cozzarelli, Processive recombination by the phage Mu Gin system: Implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action, Cell 62 (1990), 353–366.

    Article  Google Scholar 

  35. V. Katritch, J. Bednar, D. Mtchoud, R. Scharein, J. Dubochet and A. Stasiak, Geometry and physics of knots, Nature 384, Nov. 1996, 142–144.

    Article  MathSciNet  Google Scholar 

  36. R. Kusner and J. Sullivan, McIbius energies for knots and links, surfaces and manifolds, Geometry Center Research Report GCG64 (1993 rev. 1994), University of Minnesota, to appear in Proc. of 1993 Georgia Top. Cord..

    Google Scholar 

  37. N. Kuiper, pers. corresp. with J. O’Hara, see [02] /oc cit.

    Google Scholar 

  38. R. Litherland, Thickness of knots, Talk in Workshop on 3-Manifolds, Univ. Tennessee, 1992.

    Google Scholar 

  39. R. Litherland, J. Simon, and O. Durumeric, Thickness of knots,Talk in AMS Special Session on Physical Knot Theory, Iowa City, 3/96.

    Google Scholar 

  40. H.A. Lim, M.T. Carroll, and E.J. Janse Van Rensburg, Electrophoresis of knotted DNA in a regular and a random electrophoretic medium, Biomedical Modeling and Simulation (J. Eisenfeld, D.S. Levine and M. Witten, ed.), Elsevier Science Pub., 1992,213–223.

    Google Scholar 

  41. S.D. Levene and H. Tsen, Analysis of DNA knots and catenanes by agarosegel electrophoresis, Protocols in DNA Topology and Topoisomerases, vol. I (M. Bjornsti and N. Osheroff, ed.), Humana Press, 1996.

    Google Scholar 

  42. H.A. Lim and E.J. Janse Van Rensburg, A numerical simulation of electrophoresis of knotted DNA, Supercomputer Computations Research Inst. Report FSU-SCRI-91–163 (1991).

    Google Scholar 

  43. S. Lomonaco, The modern legacies of Thompson’s atomic vortex theory in classical electrodynamics, The Interface of Knots and Physics (L. Kauffman, ed.), (AMS Short Course, Jan. 1995), American Mathematical Society, 1996,145 166.

    Google Scholar 

  44. R. Litherland, J. Simon, O. Durumeric, and E. Rawdon, Thickness of knots (based on [L,Sil]), to appear in Topology and its Applic.

    Google Scholar 

  45. M. Meissen,Polygon knot table, University of Iowa,http://www.math.uiowa.edu/~meissen/PLKnotTable.html.

  46. K.C. Millett and D.W. Sumners(eds), Random Knotting and Linking, World Scientific, 1994.

    Google Scholar 

  47. H.K. Moffatt, The energy spectrum of knots and links, Nature 347, Sept. 1999,367–369.

    Article  Google Scholar 

  48. J. O’hara, Energy of a knot, Topology 30 (1991), 241–247.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. O’hara, Family of energy functionals of knots, Topology Appl. 48 (1992), 147–161.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. O’hara, Energy functionals of knots, Topology-Hawaii (K. H. Doverman), (Proc. of 1991 Conference), World Scientific, 1992,201–214 (Computer program by K. Ahara).

    Google Scholar 

  51. J. O’hara, Energy functionals of knots II, Topology and its Appl. 56 (1994), 45–61.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Olson, T. Westcott, J. Martino, G-H Liu, Computational studies of spatially constrained DNA, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schuhen, and D W Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996,195–217.

    Google Scholar 

  53. N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Randell, An elementary invariant of knots, J. Knot Theory and its Ramif. 3 (1994), 279–286 (reprinted in book Random Knotting arid Linking, K.C. Millett and D.W. Sumners (eds), World Scientific, 1994).

    Google Scholar 

  55. E. Rawdon, The thickness page, University of Iowa,http://www.math.uiowa.edu/rawdon/thick.html Preliminary data on program for finding thickest knots.

  56. E. Rawdon, Thickness of Polygonal Knots, Ph.D. Thesis, University of Iowa, August 1997.

    Google Scholar 

  57. B.Y. Rybenkov, N.R. Cozzarelli, and A.V. Vologodskii, Probability of DNA knotting and the effective diameter of the DNA double helix, Proc. Nat. Acad. Sci. 90 (1993), 5307–5311.

    Article  Google Scholar 

  58. T. Schlick, Pursuing Laplace’s vision on modern computers, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D.W. Summers, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer-Verlag, 1996, 219–247’.

    Google Scholar 

  59. R. Scharein, Knot-Plot,Univ. British Columbia, http://www.cs.ubc.ca/spider/sdiareini Program for drawing, visualizing, manipulating, and energy minimizing knots.

  60. J. Simon, Thickness of Knots, Talk in Special Session on Knotting Phenomena in the Natural Sciences, American Mathematical Society, Santa Barbara, Nov. 1991; Lecture Notes on Physical Knot Theory (notes by H. Naka), 1993, from summer 1991 course, Kwansei Gakuin University.

    Google Scholar 

  61. J. Simon, Energy functions for polygonal knots, J. Knot Theory and its Ramif. 3 (1994), 299–320 (reprinted in book Random Knotting and Linking, K.C. Millet t and D.W. Sumners (eds), World Scientific, 1994).

    Google Scholar 

  62. J. Simon, Energy functions for knots: beginning to predict physical behavior, Mathematical Approach to Biomolecular Structure and Dynamics (J.P. Mesirov, K. Schulten, and D W Sumners, ed.), Proc. of 1994 IMA Summer Program on Molecular Biology, IMA Volume no. 82, Springer- Verlag, 1996,39–58.

    Google Scholar 

  63. J. Simon, papers available by anonymous ftp,http://www.nriath.uiowa.eduhjsimon/README.html.ISSCI S. Spengler

  64. A. Stasiak, and N.R. Cozzarelli, The stereostructure of knots and catenanes produced by phage A integrative recombination: implications for mechanism and DNA structure, Cell 42 (1985), 325–334.

    Article  Google Scholar 

  65. A. Stasiak, V. Katritch, J. Bednar, D. Michoud, and J. Dubochet, Electrophoretic mobility of DNA knots, Nature 384, Nov. 1996,122.

    Article  MathSciNet  Google Scholar 

  66. A. Stasiak, Ideal forms of knots, Talk in Special Session on Physical Knot Theory, Amer. Math. Soc., Iowa City, March 1996 (Revised paper to appear Dec. 96 Nature).

    Google Scholar 

  67. D.W. Sumners and S. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.

    Article  MathSciNet  MATH  Google Scholar 

  68. S.Y. Shaw and J.C. Wang, Knotted DNA rings: probability of formation and resolution of the two chiral trefoils, Science 260 (1993), 533–536.

    Article  Google Scholar 

  69. S.Y. Shaw and J.C. Wang, DNA knot formation in aqueous solutions, J. Knot Theory and its Ramif. 3 (1994), 287–298.

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Tabor and I. Klapper, Dynamics of twist and writhe and the modelingof bacterial fibers, Mathematical Approach to Biomolecular Structure and Dynamics (J.R Mesirov, K. Schulten, and D.W. Sumners, ed.), Proc. of 1994 IMA Sununer Program on Molecular Biology, IMA Volume no, 82, Springer-Verlag, 1996,139–159.

    Google Scholar 

  71. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii and V.V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Soy. Phys.-JETP 39 (1974), 1059–1063.

    MathSciNet  Google Scholar 

  72. E. Wasserman, Chemical Topology, Scientific American 207(5) (1962), 94–102.

    Article  Google Scholar 

  73. S. Wasserman and N.R. Cozzarelli, Supercoiled DNA-directed knotting by T4 topoisomerase, J. Biol. Chem. 266 (1991), 73–95.

    Google Scholar 

  74. Y.-Q. Wu, Ming,University of Iowa, http://www.math.uiowa.edu/~wu/, Program for visualizing, manipulating, and energy minimizing polygonal knots.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Simon, J. (1998). Energy and Thickness of Knots* . In: Whittington, S.G., De Sumners, W., Lodge, T. (eds) Topology and Geometry in Polymer Science. The IMA Volumes in Mathematics and its Applications, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1712-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1712-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98580-0

  • Online ISBN: 978-1-4612-1712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics