Skip to main content

Topological Entanglement Complexity of Polymer Chains in Confined Geometries

  • Chapter
Topology and Geometry in Polymer Science

Abstract

Long polymer chains in solution can be highly self-or mutually entangled. Several kinds of constraints can influence entanglement properties; among them a crucial role is played by geometrical constraints, which confine the chain(s) to restricted spaces. In this paper we investigate, using analytical and numerical techniques, the effects of different kinds of geometrical constraints on the topological entanglement complexity of polymer chain(s), i.e. on the knotting and linking probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. De Gennes, Tight knots, Macromolecules 17 (1984), 703–704.

    Article  Google Scholar 

  2. S.F. Edwards, Statistical mechanics with topological constraints: I, Proc. Phys. Soc. 91 (1967), 513–519.

    Article  MATH  Google Scholar 

  3. S.A. Wasserman and N.R. Cozzarelli, Biochemical topology: applications to DNA recombination and replication, Science 232 (1986), 951–960.

    Article  Google Scholar 

  4. D.W. Sumners, Knot theory and DNA, in New Scientific Applications of Geometry and Topology, Proceedings of Symposia in Applied Mathematics 45, D.W. Sumners, ed., Am. Math. Soc. (1992), 39–72.

    Google Scholar 

  5. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii and V.V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Soy. Phys.-JETP 39 (1974), 1059–1063.

    MathSciNet  Google Scholar 

  6. J.P.J. Michels and F.W. Wiegel, On the topology of a polymer ring, Proc. Roy. Soc. A 403 (1986), 269–284.

    Article  MathSciNet  MATH  Google Scholar 

  7. E.J. Janse Van Rensburg and S.G. Whittington, The knot probability in lattice polygons, J. Phys. A: Math. Gen. 23 (1990), 3573–3590.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Koniaris and M. Muthukumar, Self-entanglement in ring polymers, J. Chem. Phys. 95 (1991), 2873–81.

    Article  Google Scholar 

  9. D.W. Sumners and S.G. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.E. Soteros, D.W. Sumners and S.G. Whittington, Entanglement complexity of graphs in Z 3, Math. Proc. Camb. Phil. Soc. 111 (1992), 75–91.

    Article  MathSciNet  MATH  Google Scholar 

  12. E.J. Janse Van Rensburg, D.W. Sumners, E. Wasserman and S.G. Whittington, Entanglement complexity of self-avoiding walks, J. Phys. A: Math. Gen. 25 (1992), 6557–66.

    Article  MathSciNet  MATH  Google Scholar 

  13. A.V. Vologodskii, A.V. Lukashin and M.D. Frank-Kamenetskii, Topological interactions between polymer chains, Soy. Phys.-JETP 40 (1974), 932–936.

    Google Scholar 

  14. K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne and M.D. Frank-Kamenetskii, Effect of excluded volume on topological properties of circular DNA, J. Biomol. Str. Dyn. 5 (1988), 1173–85.

    Google Scholar 

  15. W.F. Pohl, The probability of linking of random closed curves, Lectures Notes in Mathematics 894 (1981), 113–126.

    Article  MathSciNet  Google Scholar 

  16. B. Duplantier, Linking Numbers, Contacts and Mutual Inductances of a Random Set of Closed Curves,Comm. Math. Phys. 82 (1981), 41–68.

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Orlandini, E.J. Janse Van Rensburg, M.C. Tesi and S.G. Whittington, Random linking of lattice polygons, J. Phys. A: Math. Gen. 27 (1994), 335–45.

    Article  MATH  Google Scholar 

  18. J.M. Hammersley, The number of polygons on a lattice, Proc. Camb. Phil. Soc. 57 (1961), 516–523.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.M. Hammersley, Percolation processes II. The connective constant, Proc. Camb. Phil. Soc. 53 (1957), 642–645.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4 (1963), 960–969.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Diao, N. Pippenger and D.W. Sumners, On random knots, J. Knot Theory and Ramifications 3 (1994), 419–429.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Diao, The knotting of equilateral polygons in R 3, J. Knot Theory and Ramifications 2 (1994), 413–425.

    Article  MathSciNet  Google Scholar 

  23. J.M. Hammersley and S.G. Whittington, Self-avoiding walks in wedges, J. Phys. A: Math. Gen. 18 (1985), 101–111.

    Article  MathSciNet  Google Scholar 

  24. C.E. Soteros and S.G. Whittington, Lattice models of branched polymers: effects of geometrical constraints, J. Phys. A: Math. Gen. 22 (1989), 5259–5270.

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Madras and G. Slade, The Self-Avoiding Walk, Birkh5,user, Boston, 1993.

    Google Scholar 

  26. M.C. Tesi, E.J. Janse Van Rensburg, E. Orlandini and S.G. Whittington, Knot probability for lattice polygons in confined geometries, J. Phys. A: Math. Gen. 27 (1994), 347–60.

    Article  MATH  Google Scholar 

  27. C.E. Soteros, Knots in graphs in subsets of Z 3, in this IMA volume.

    Google Scholar 

  28. D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Inc., Houston, Texas, 1976.

    Google Scholar 

  29. G. Torres, On the Alexander polynomial, Ann. Math. 57 (1953), 57–89.

    Article  Google Scholar 

  30. M. Lal, “Monte Carlo” computer simulations of chain molecules. I., Molec. Phys. 17 (1969), 57–64.

    Google Scholar 

  31. N. Madras and A.D. Sokal, The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk, 50, J. Stat. Phys. (1988), 109–186.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Madras, A. Orlitsky and L.A. Shepp, Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length, J. Stat. Phys. 58 (1990), 159–183.

    Article  MathSciNet  Google Scholar 

  33. E.J. Janse Van Rensburg, S.G. Whittington and N. Madras, The pivot algorithm and polygons, J. Phys. A: Math. Gen. 23 (1990), 1589–1612.

    Article  MATH  Google Scholar 

  34. D.E. Knuth, The Art of Computer Programming, volume 3, Addison-Wesley, Reading MA, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tesi, M.C., van Rensburg, E.J.J., Orlandini, E., Whittington, S.G. (1998). Topological Entanglement Complexity of Polymer Chains in Confined Geometries. In: Whittington, S.G., De Sumners, W., Lodge, T. (eds) Topology and Geometry in Polymer Science. The IMA Volumes in Mathematics and its Applications, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1712-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1712-1_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98580-0

  • Online ISBN: 978-1-4612-1712-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics