Topological Entanglement Complexity of Polymer Chains in Confined Geometries

  • Maria Carla Tesi
  • E. J. Janse van Rensburg
  • Enzo Orlandini
  • Stuart G. Whittington
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 103)

Abstract

Long polymer chains in solution can be highly self-or mutually entangled. Several kinds of constraints can influence entanglement properties; among them a crucial role is played by geometrical constraints, which confine the chain(s) to restricted spaces. In this paper we investigate, using analytical and numerical techniques, the effects of different kinds of geometrical constraints on the topological entanglement complexity of polymer chain(s), i.e. on the knotting and linking probabilities.

Keywords

Lattice models self-avoiding polygons topological entanglement complexity knotting and linking probabilities Monte Carlo methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.G. De Gennes, Tight knots, Macromolecules 17 (1984), 703–704.CrossRefGoogle Scholar
  2. [2]
    S.F. Edwards, Statistical mechanics with topological constraints: I, Proc. Phys. Soc. 91 (1967), 513–519.CrossRefMATHGoogle Scholar
  3. [3]
    S.A. Wasserman and N.R. Cozzarelli, Biochemical topology: applications to DNA recombination and replication, Science 232 (1986), 951–960.CrossRefGoogle Scholar
  4. [4]
    D.W. Sumners, Knot theory and DNA, in New Scientific Applications of Geometry and Topology, Proceedings of Symposia in Applied Mathematics 45, D.W. Sumners, ed., Am. Math. Soc. (1992), 39–72.Google Scholar
  5. [5]
    A.V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii and V.V. Anshelevich, The knot probability in statistical mechanics of polymer chains, Soy. Phys.-JETP 39 (1974), 1059–1063.MathSciNetGoogle Scholar
  6. [6]
    J.P.J. Michels and F.W. Wiegel, On the topology of a polymer ring, Proc. Roy. Soc. A 403 (1986), 269–284.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E.J. Janse Van Rensburg and S.G. Whittington, The knot probability in lattice polygons, J. Phys. A: Math. Gen. 23 (1990), 3573–3590.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    K. Koniaris and M. Muthukumar, Self-entanglement in ring polymers, J. Chem. Phys. 95 (1991), 2873–81.CrossRefGoogle Scholar
  9. [9]
    D.W. Sumners and S.G. Whittington, Knots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. Pippenger, Knots in random walks, Disc. Appl. Math. 25 (1989), 273–278.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C.E. Soteros, D.W. Sumners and S.G. Whittington, Entanglement complexity of graphs in Z 3, Math. Proc. Camb. Phil. Soc. 111 (1992), 75–91.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E.J. Janse Van Rensburg, D.W. Sumners, E. Wasserman and S.G. Whittington, Entanglement complexity of self-avoiding walks, J. Phys. A: Math. Gen. 25 (1992), 6557–66.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A.V. Vologodskii, A.V. Lukashin and M.D. Frank-Kamenetskii, Topological interactions between polymer chains, Soy. Phys.-JETP 40 (1974), 932–936.Google Scholar
  14. [14]
    K.V. Klenin, A.V. Vologodskii, V.V. Anshelevich, A.M. Dykhne and M.D. Frank-Kamenetskii, Effect of excluded volume on topological properties of circular DNA, J. Biomol. Str. Dyn. 5 (1988), 1173–85.Google Scholar
  15. [15]
    W.F. Pohl, The probability of linking of random closed curves, Lectures Notes in Mathematics 894 (1981), 113–126.MathSciNetCrossRefGoogle Scholar
  16. [16]
    B. Duplantier, Linking Numbers, Contacts and Mutual Inductances of a Random Set of Closed Curves,Comm. Math. Phys. 82 (1981), 41–68.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    E. Orlandini, E.J. Janse Van Rensburg, M.C. Tesi and S.G. Whittington, Random linking of lattice polygons, J. Phys. A: Math. Gen. 27 (1994), 335–45.CrossRefMATHGoogle Scholar
  18. [18]
    J.M. Hammersley, The number of polygons on a lattice, Proc. Camb. Phil. Soc. 57 (1961), 516–523.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    J.M. Hammersley, Percolation processes II. The connective constant, Proc. Camb. Phil. Soc. 53 (1957), 642–645.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4 (1963), 960–969.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    Y. Diao, N. Pippenger and D.W. Sumners, On random knots, J. Knot Theory and Ramifications 3 (1994), 419–429.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Y. Diao, The knotting of equilateral polygons in R 3, J. Knot Theory and Ramifications 2 (1994), 413–425.MathSciNetCrossRefGoogle Scholar
  23. [23]
    J.M. Hammersley and S.G. Whittington, Self-avoiding walks in wedges, J. Phys. A: Math. Gen. 18 (1985), 101–111.MathSciNetCrossRefGoogle Scholar
  24. [24]
    C.E. Soteros and S.G. Whittington, Lattice models of branched polymers: effects of geometrical constraints, J. Phys. A: Math. Gen. 22 (1989), 5259–5270.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    N. Madras and G. Slade, The Self-Avoiding Walk, Birkh5,user, Boston, 1993.Google Scholar
  26. [26]
    M.C. Tesi, E.J. Janse Van Rensburg, E. Orlandini and S.G. Whittington, Knot probability for lattice polygons in confined geometries, J. Phys. A: Math. Gen. 27 (1994), 347–60.CrossRefMATHGoogle Scholar
  27. [27]
    C.E. Soteros, Knots in graphs in subsets of Z 3, in this IMA volume.Google Scholar
  28. [28]
    D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Inc., Houston, Texas, 1976.Google Scholar
  29. [29]
    G. Torres, On the Alexander polynomial, Ann. Math. 57 (1953), 57–89.CrossRefGoogle Scholar
  30. [30]
    M. Lal, “Monte Carlo” computer simulations of chain molecules. I., Molec. Phys. 17 (1969), 57–64.Google Scholar
  31. [31]
    N. Madras and A.D. Sokal, The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk, 50, J. Stat. Phys. (1988), 109–186.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    N. Madras, A. Orlitsky and L.A. Shepp, Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length, J. Stat. Phys. 58 (1990), 159–183.MathSciNetCrossRefGoogle Scholar
  33. [33]
    E.J. Janse Van Rensburg, S.G. Whittington and N. Madras, The pivot algorithm and polygons, J. Phys. A: Math. Gen. 23 (1990), 1589–1612.CrossRefMATHGoogle Scholar
  34. [34]
    D.E. Knuth, The Art of Computer Programming, volume 3, Addison-Wesley, Reading MA, 1973.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Maria Carla Tesi
    • 1
  • E. J. Janse van Rensburg
    • 2
  • Enzo Orlandini
    • 3
  • Stuart G. Whittington
    • 4
  1. 1.Mathématiques Bat 425Université de Paris-SudFrance
  2. 2.Department of Mathematics and StatisticsYork University, Downsview, OntarioCanada
  3. 3.CEA-SaclayService de Physique ThéoriqueFrance
  4. 4.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations