Skip to main content

Geometrical Entanglement in Lattice Models of Ring Polymers: Torsion and Writhe

  • Chapter
Numerical Methods for Polymeric Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 102))

  • 310 Accesses

Abstract

The torsion of self-avoiding polygons (SAPs) on the cubic lattice is studied by means of rigorous results and Monte Carlo simulations. More precisely, rigorous results can be obtained in the asymptotic limit of infinitely long chains, while numerical simulations are essential to investigate the behavior of chains of finite length. The relation between torsion and the geometrical entanglement of SAPs is explored, and the results obtained are compared with ones concerning the writhe, which is another measure of geometrical entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.G. De GennesTight knots, Macromolecules 17 (1984), 703–704.

    Article  Google Scholar 

  2. S.F. EdwardsStatistical mechanics with topological constraints: I, Proc. Phys. Soc. 91 (1967), 513.

    MATH  Google Scholar 

  3. S.A. Wasserman, J.M. Dungan and N.R. CozzarelliDiscovery of a predicted DNA knot substantiates a model for site-specific recombination, Science 229 (1985), 171–174.

    Article  Google Scholar 

  4. E.J. Janse Van Rensburg, E. OrlandinI, D.W. Sumners, M.C. Tesi and S.G. Whittington, Topology and geometry of biopolymers, in Mathematical approaches to bimolecular structure and Dynamics, IMA volume 82 (to appear).

    Google Scholar 

  5. W.R. Bauer, F.H.C. Crick and J.H. WhiteSupercoiled DNA, Sci. American 243 (1980), 118–133.

    Google Scholar 

  6. D.W. Sumners and S.G. WhittingtonKnots in self-avoiding walks, J. Phys. A: Math. Gen. 21 (1988), 1689–1694.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. PippengerKnots in random walks Disc. Appl. Math. 25 (1989), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  8. C.S. Soteros, D.W. Sumners and S.G. WhittingtonEntanglement complexity of graphs in Z 3, Math. Proc. Camb. Phil. Soc. 111 (1992), 75–91.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.V. Vologodskii, A.V. Lukashin, M.D. Frank-kamenetskii and V.V. AnshelevichThe knot probability in statistical mechanics of polymer chains, Sov. Phys-JEPT 39 (1974), 1059–1063.

    MathSciNet  Google Scholar 

  10. E.J. Janse Van Rensburg and S.G. WhittingtonThe knot probability in lattice polygons, J. Phys. A: Math. Gen. 23 (1990), 3573–3590.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.C. Tesi, E.J. Janse Van Rensburg, E. OrlandinI, D.W. Sumners and S.G. WhittingtonKnotting and supercoiling in circular DNA: a model incorporating the effect of added salt, Phys. Rev. E 49 (1994), 868–872.

    Article  Google Scholar 

  12. E.J. Janse VaN Rensburg, E. ORlandini, D.W. Sumners, M.C. Tesi and S.G. WhittingtonThe writhe of a self-avoiding polygon,J. Phys. A: Math. Gen.26 (1993), L981–L986.

    Article  MathSciNet  Google Scholar 

  13. E. Orlandini, M.C. Tesi, S.G. Whittington, D.W. Sumners and E.J. Janse Van Rensburg, The writhe of a self-avoiding walk, J. Phys. A: Math. Gen.27 (1994), L333—L338.

    Article  Google Scholar 

  14. D.J. Struik, Lectures on classical differential geometry, Dover Publications, NY, 1988, 232.

    MATH  Google Scholar 

  15. M.C. Tesi, E.J. Janse Van Rensburg, E. Orlandini and S.G. Whittington, Torsion of a self-avoiding polygon in three dimension J. Phys. A: Math. Gen. (1997).

    Google Scholar 

  16. F.B. Fuller, The Writhing Number of a Space Curve, Proc. Natl. Acad. Sci. USA 68 (1971), 815–819.

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Diao, N. Pippenger and D.W. Sumners, On random knots, J. Knot Theory and Ramifications 3 (1994), 419–429.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Kesten, On the number of self-avoiding walks, J. Math. Phys. 4 (1963), 960–969.

    Article  MathSciNet  MATH  Google Scholar 

  19. R.C. Lacher and D.W. Sumners, Data structures and algorithms for the computation of topological invariants of entanglements: link, twist and writhe,in Computer simulations of polymers, R.J Roe ed., Prentice-Hall (1991), 365–373.

    Google Scholar 

  20. M. Lal, “Monte Carlo” computer simulations of chain molecules. I, Mol. Phys. 17 (1969), 57–64.

    Article  Google Scholar 

  21. N. Madras and A.D. Sokal, The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk, J. Stat. Phys. 50 (1988), 109–186.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Madras, A. Orlitsky and L.A. Shepp, Monte Carlo generation of self-avoiding walks with fixed endpoints and fixed length, J. Stat. Phys. 58 (1990), 159–183.

    Article  MathSciNet  Google Scholar 

  23. M.G. Bickis, The torsion of three-dimensional random walk, private communication.

    Google Scholar 

  24. C.C. Adams, The knot book, W.H. Freeman and Company, 1994, 306.

    Google Scholar 

  25. B. Berg and D. Foester, Random paths and random surfaces on a digital computer, Phys. Lett 106B (1981), 323–326.

    Google Scholar 

  26. C. Aragao De Carvalho, S. Caracciolo and J. Fröhlich, Polymers and 0)I 4 -theory in four dimensions Nucl. Phys. B [FS7] 215 (1983), 209–248.

    Article  Google Scholar 

  27. E.J. Janse Van Rensburg and S.G. Whittington, The BFACF algorithm and knotted polygons,J. Phys. A: Math. Gen. 24 (1991), 5553–5567.

    Article  MathSciNet  MATH  Google Scholar 

  28. A.D. Sokal and L.E. Thomas, Exponential convergence to equilibrium for a class of random walk models, J. Stat. Phys. 54 (1989), 797–828.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Orlandini, Monte Carlo study of polymer systems by Multiple Markov Chain method, in this volume.

    Google Scholar 

  30. M.C. Tesi, E.J. Janse Van Rensburg, E. Orlandini and S.G. Whittington, Monte Carlo study of the interacting self-avoiding walk model in three dimensions, J. Stat. Phys. 82 (1996), 155–181.

    Article  MathSciNet  MATH  Google Scholar 

  31. D.M. Walba, Topological stereochemistry, Tetrahedron 41(16) (1985), 3161–3212.

    Article  Google Scholar 

  32. E.J. Janse Van Rensburg, E. Orlandini, D.W. Sumners, M.C. Tesi and S.G. Whittington, The writhe of knots in the cubic lattice, J. Knot Theory and Ramifications, volume 6, 31–44, 1997.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tesi, M.C. (1998). Geometrical Entanglement in Lattice Models of Ring Polymers: Torsion and Writhe. In: Whittington, S.G. (eds) Numerical Methods for Polymeric Systems. The IMA Volumes in Mathematics and its Applications, vol 102. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1704-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1704-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7249-6

  • Online ISBN: 978-1-4612-1704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics