Advertisement

On the Distribution of Digital Sequences

  • Gerhard Larcher
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

Low-discrepancy point sets are the basic tool for various quasi-Monte Carlo methods. The most important concept for the construction of low-discrepancy point sets in an s-dimensional unit cube is the concept of digital point sets, introduced by Niederreiter in 1987. We show that “almost all” digital sequences in a prime base are, in a certain sense, almost best possible distributed in the unit cube. Thereby we improve a result given in [LN95]

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Fau82]
    H. Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta Arith., 41:337–351, 1982.zbMATHMathSciNetGoogle Scholar
  2. [Kie61]
    J. Kiefer. On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math., 11:649–660, 1961.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [KN74]
    L. Kuipers and H. Niederreiter. Uniform Distribution of Se-quences. John Wiley, New York, 1974.Google Scholar
  4. [Lar95]
    G. Larcher. On the distribution of an analog to classical Kronecker-sequences. J. Number Theory, 52:198–215, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [Lar96]
    G. Larcher. A bound for the discrepancy of digital nets and its application to the analysis of certain pseudo-random number generators. Preprint. University Salzburg, 1996.Google Scholar
  6. [LLNS96]
    G. Larcher, A. Lauß, H. Niederreiter, and W. Ch. Schmid. Optimal polynomials for (t, m, s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Analysis, 33–6, 1996.Google Scholar
  7. [LN95]
    G. Larcher and H. Niederreiter. Generalized (t, s)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series. Trans. Amer. Math. Soc., 347:2051–2073, 1995.zbMATHMathSciNetGoogle Scholar
  8. [LNS96]
    G. Larcher, H. Niederreiter, and W. Ch. Schmid. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math., 121:231253, 1996.MathSciNetGoogle Scholar
  9. [LS95]
    G. Larcher and W. Ch. Schmid. Multivariate Walsh series, di-gital nets and quasi-Monte Carlo integration. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Las Vegas,19910, volume 106 of Lecture Notes in Statistics, pages 252–262. Springer, New York, 1995.CrossRefGoogle Scholar
  10. [LT94]
    G. Larcher and C. Traunfellner. On the numerical integration of Walsh series by number-theoretic methods. Math. Comp., 63:277–291, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [Nie87]
    H. Niederreiter. Point sets and sequences with small discrepancy.Monatsh. Math., 104:273–337, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Nie88]
    H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Number Theory, 30:51–70, 1988.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [Nie92a]
    H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J., 42:143166, 1992.MathSciNetGoogle Scholar
  14. [Nie92b]
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. Number 63 in CBMS—NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.CrossRefGoogle Scholar
  15. [NX96a]
    H. Niederreiter and C. P. Xing. Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl., 2:241–273, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [NX96b]
    H. Niederreiter and C. P. Xing. Quasirandom points and global function fields. In S. Cohen and H. Niederreiter, editors, Finite Fields and Applications (Glasgow,1995), volume 233 of Led. Note Series of the London Math. Soc., pages 269–296. Camb. Univ. Press, Cambridge, 1996.Google Scholar
  17. [Rot54]
    K. F. Roth. On irregularities of distribution. Mathematika,1:73–79, 1954.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [Sob67]
    I. M. Sobol’. The distribution of points in a cube and the approximate evaluation of integrals. Z. Vycisl. Mat. i Mat Fiz., ‘T:784–802, 1967. (Russian).Google Scholar
  19. [SW96]
    W. Ch. Schmid and R. Wolf. Bounds for digital nets and sequences. Acta Arith., 1996. To appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Gerhard Larcher
    • 1
  1. 1.Institut für MathematikUniversität SalzburgSalzburgAustria

Personalised recommendations