Advertisement

A survey of quadratic and inversive congruential pseudorandom numbers

  • Jürgen Eichenauer-Herrmann
  • Eva Herrmann
  • Stefan Wegenkittl
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

This review paper deals with nonlinear methods for the generation of uniform pseudorandom numbers in the unit interval. The emphasis is on results of the theoretical analysis of quadratic congruential and (recursive) inversive congruential generators, which are scattered over a fairly large number of articles. Additionally, empirical results of some sample generators in a two—level overlapping serial test are given.

Keywords

Period Length Pseudorandom Number Congruential Generator Congruential Sequence Congruential Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman, Eds., Proceedings of the 1995 Winter Simulation Conference, IEEE Press, Piscataway, NJ, 1995.Google Scholar
  2. [2]
    W.-S. Chou, On inversive maximal period polynomials over finite fields, Appl. Algebra Engrg, Comm. Comput. 6 (1995) 245–250.zbMATHGoogle Scholar
  3. [3]
    W.-S. Chou The period lengths of inversive congruential recursions, Acta Arith. 73 (1995) 325–341.zbMATHMathSciNetGoogle Scholar
  4. [4]
    W.-S. Chou The period lengths of inversive pseudorandom vector generations, Finite Fields Appl. 1 (1995) 126–132.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    W.-S. Chou and H. Niederreiter, On the lattice test for inversive congruential pseudorandom numbers, in: [93], 186–197.Google Scholar
  6. [6]
    K.-L. Chung, An estimate concerning the Kolmogoroff limit distribution, Trans. Amer. Math. Soc. 67 (1949) 36–50.zbMATHGoogle Scholar
  7. [7]
    T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27 (1987) 9–16.zbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Eichenauer, H. Grothe, and J. Lehn, Marsaglia’s lattice test and non-linear congruential pseudo random number generators, Metrika 35 (1988) 241–250.zbMATHGoogle Scholar
  9. [9]
    J. Eichenauer, H. Grothe, J. Lehn, and A. Topuzogglu, A multiple recursive non-linear congruential pseudo random number generator, Manuscripta Math. 59 (1987) 331–346.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    J. Eichenauer and J. Lehn, A non-linear congruential pseudo random number generator, Statist. Papers 27 (1986) 315–326.zbMATHMathSciNetGoogle Scholar
  11. [11]
    J. Eichenauer and J. Lehn On the structure of quadratic congruential sequences, Manuscripta Math. 58 (1987) 129–140.zbMATHMathSciNetGoogle Scholar
  12. [12]
    J. Eichenauer, J. Lehn, and A. Topuzoglu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51 (1988) 757–759.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    J. Eichenauer and H. Niederreiter, On Marsaglia’s lattice test for pseudorandom numbers, Manuscripta Math. 82 (1988) 245–248.MathSciNetGoogle Scholar
  14. [14]
    J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers avoid the planes, Math. Comp. 56 (1991) 297–301.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    J. Eichenauer-Herrmann On the discrepancy of inversive congruential pseudorandom numbers with prime power modulus, Manuscripta Math. 71 (1991) 153–161.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    J. Eichenauer-Herrmann A remark on the discrepancy of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math. 43 (1992) 383–387.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    J. Eichenauer-Herrmann Construction of inversive congruential pseudorandom number generators with maximal period length, J. Comput. Appl. Math. 40 (1992) 345–349.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    J. Eichenauer-Herrmann Inversive congruential pseudorandom numbers: a tutorial, Internat. Statist. Rev. 60 (1992) 167–176.CrossRefzbMATHGoogle Scholar
  19. [19]
    J. Eichenauer-Herrmann On the autocorrelation structure of inversive congruential pseudorandom number sequences, Statist. Papers 33 (1992) 261–268.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    J. Eichenauer-Herrmann Equidistribution properties of nonlinear congruential pseudorandom numbers, Metrika 40 (1993) 333–338.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    J. Eichenauer-Herrmann Explicit inversive congruential pseudorandom numbers: the compound approach, Computing 51 (1993) 175–182.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    J. Eichenauer-Herrmann Inversive congruential pseudorandom numbers, Z. Angew. Math. Mech. 73 (1993) T644–T647.zbMATHMathSciNetGoogle Scholar
  23. [23]
    J. Eichenauer-Herrmann On the discrepancy of inversive congruential pseudorandom numbers with prime power modulus, II, Manuscripta Math. 79 (1993) 239–246.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993) 375–384.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    J. Eichenauer-Herrmann The lattice structure of nonlinear congruential pseudorandom numbers, Metrika 40 (1993) 115–120.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    J. Eichenauer-Herrmann Compound nonlinear congruential pseudorandom numbers, Monatsh. Math. 117 (1994) 213–222.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    J. Eichenauer-Herrmann Improved lower bounds for the discrepancy of inversive congruential pseudoran-dom numbers, Math. Comp. 82 (1994) 783–786.CrossRefMathSciNetGoogle Scholar
  28. [28]
    J. Eichenauer-Herrmann On generalized inversive congruential pseudorandom numbers, Math. Comp. 63 (1994) 293–299.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    J. Eichenauer-Herrmann On the discrepancy of quadratic congruential pseudorandom numbers with power of two modulus, J. Comput. Appl. Math. 53 (1994) 371–376.zbMATHMathSciNetGoogle Scholar
  30. [30]
    J. Eichenauer-Herrmann A unified approach to the analysis of compound pseudorandom numbers, Finite Fields Appl. 1 (1995) 102–114.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    J. Eichenauer-Herrmann Discrepancy bounds for nonoverlapping pairs of quadratic congruential pseudo-random numbers, Arch. Math. 65 (1995) 362–368.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    J. Eichenauer-Herrmann Nonoverlapping pairs of explicit inversive congruential pseudorandom numbers, Monatsh. Math. 119 (1995) 49–61.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    J. Eichenauer-Herrmann Pseudorandom number generation by nonlinear methods, Internat. Statist. Rev. 63 (1995) 247–255.CrossRefzbMATHGoogle Scholar
  34. [34]
    J. Eichenauer-Herrmann Quadratic congruential pseudorandom numbers: distribution of triples, J. Com- put. Appl. Math. 62 (1995) 239–253.MathSciNetGoogle Scholar
  35. [35]
    J. Eichenauer-Herrmann Equidistribution properties of inversive congruential pseudorandom numbers with power of two modulus, Metrika 44 (1996) 199–205.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    J. Eichenauer-Herrmann Modified explicit inversive congruential pseudorandom numbers with power of two modulus, Statistics and Computing 6 (1996) 31–36.CrossRefGoogle Scholar
  37. [37]
    J. Eichenauer-Herrmann Quadratic congruential pseudorandom numbers: distribution of lagged pairs, J. Comput. Appl. Math. 79 (1997) 75–85.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    J. Eichenauer-Herrmann Quadratic congruential pseudorandom numbers: distribution of triples, II, J. Comput. Appl. Math. (to appear).Google Scholar
  39. [39]
    J. Eichenauer-Herrmann Improved upper bounds for the discrepancy of pairs of inversive congruential pseudorandom numbers with power of two modulus, Preprint.Google Scholar
  40. [40]
    J. Eichenauer—Herrmann and F. Emmerich, A review of compound methods for pseudorandom number generation, in: [67], 5–14.Google Scholar
  41. [41]
    J. Eichenauer-Herrmann and F. Emmerich Compound inversive congruential pseudorandom numbers: an average—case analy-sis, Math. Comp. 65 (1996) 215–225.CrossRefzbMATHMathSciNetGoogle Scholar
  42. [42]
    J. Eichenauer-Herrmann, F. Emmerich, and G. Larcher, Average discrepancy, hyperplanes, and compound pseudorandom numbers, Finite Fields Appl. (to appear).Google Scholar
  43. [43]
    J. Eichenauer-Herrmann and H. Grothe, A new inversive congruential pseudorandom number generator with power of two modulus, ACM Trans. Modeling and Computer Simulation 2 (1992) 1–11.CrossRefzbMATHGoogle Scholar
  44. [44]
    J. Eichenauer-Herrmann, H. Grothe, H. Niederreiter, and A. Topuzoglu, On the lattice structure of a nonlinear generator with modulus 2a, J. Comput. Appl. Math. 31 (1990) 81–85.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    J. Eichenauer-Herrmann and E. Herrmann, Compound cubic congruential pseudorandom numbers, Computing (to appear).Google Scholar
  46. [46]
    J. Eichenauer-Herrmann and K. Ickstadt, Explicit inversive congruential pseudorandom numbers with power of two modulus, Math. Comp. 62 (1994) 787–797.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    J. Eichenauer-Herrmann and G. Larcher, Average behaviour of compound nonlinear congruential pseudorandom numbers, Finite Fields Appl. 2 (1996) 111–123.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    J. Eichenauer-Herrmann and G. Larcher Average equidistribution properties of compound nonlinear congruential pseudo-random numbers, Math. Comp. 66 (1997) 363–372.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    J. Eichenauer-Herrmann and H. Niederreiter, On the discrepancy of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math. 34 (1991) 243–249.CrossRefzbMATHMathSciNetGoogle Scholar
  50. [50]
    J. Eichenauer-Herrmann and H. Niederreiter Lower bounds for the discrepancy of inversive congruential pseudorandom num-bers with power of two modulus, Math. Comp. 58 (1992) 775–779.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    J. Eichenauer-Herrmann and H. Niederreiter Kloosterman—type sums and the discrepancy of nonoverlapping pairs of inversive congruential pseudorandom numbers, Acta Arith. 85 (1993) 185–194.MathSciNetGoogle Scholar
  52. [52]
    J. Eichenauer-Herrmann and H. Niederreiter Bounds for exponential sums and their applications to pseudorandom numbers, Acta Arith. 67 (1994) 269–281.zbMATHMathSciNetGoogle Scholar
  53. [53]
    J. Eichenauer-Herrmann and H. Niederreiter On the statistical independence of nonlinear congruential pseudorandom num-bers, ACM Trans. Modeling and Computer Simulation 4 (1994) 89–95.CrossRefzbMATHGoogle Scholar
  54. [54]
    J. Eichenauer-Herrmann and H. Niederreiter Digital inversive pseudorandom numbers, ACM Trans. Modeling and Computer Simulation 4 (1994) 339–349.CrossRefzbMATHGoogle Scholar
  55. [55]
    J. Eichenauer-Herrmann and H. Niederreiter An improved upper bound for the discrepancy of quadratic congruential pseudo-random numbers, Acta Arith. 69 (1995) 193–198.zbMATHMathSciNetGoogle Scholar
  56. [56]
    J. Eichenauer-Herrmann and H. Niederreiter Inversive congruential pseudorandom numbers: distribution of triples, Math. Comp. (to appear).Google Scholar
  57. [57]
    J. Eichenauer-Herrmann and H. Niederreiter Lower bounds for the discrepancy of triples of inversive congruential pseudoran-dom numbers with power of two modulus, Monatsh. Math. (to appear).Google Scholar
  58. [58]
    J. Eichenauer-Herrmann and H. Niederreiter Parallel streams of nonlinear congruential pseudorandom numbers, Finite Fields Appl. (to appear).Google Scholar
  59. [59]
    J. Eichenauer-Herrmann and A. Topuzoglu, On the period length of congruential pseudorandom number sequences generated by inversions, J. Comput. Appl. Math. 31 (1990) 87–96.CrossRefzbMATHMathSciNetGoogle Scholar
  60. [60]
    F. Emmerich, New methods in pseudorandom vector generation, in: [67], 15–23.Google Scholar
  61. [61]
    F. Emmerich Pseudorandom Number and Vector Generation by Compound Inversive Meth- ods, Dissertation, Darmstadt, 1996.Google Scholar
  62. [62]
    F. Emmerich Pseudorandom vector generation by the compound inversive method, Math. Comp. 65 (1996) 749–760.CrossRefzbMATHMathSciNetGoogle Scholar
  63. [63]
    Equidistribution properties of quadratic congruential pseudorandom numbers, J. Comput. Appl. Math. 79 (1997) 207–214.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    F. Emmerich and T. Müller—Gronbach, A law of the iterated logarithm for discrete discrepancies and its applications to pseudorandom vector sequences, Preprint.Google Scholar
  65. [65]
    M. Flahive and H. Niederreiter, On inversive congruential generators for pseudorandom numbers, in: [77], 75–80.Google Scholar
  66. [66]
    P. Hellekalek, Inversive pseudorandom number generators: concepts, results, and links, in: [1], 255–262.Google Scholar
  67. [67]
    P. Hellekalek, G. Larcher, and P. Zinterhof, Eds., Proceedings of the 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi—Monte Carlo Methods, Austrian Center for Parallel Computation, Vienna, 1995.Google Scholar
  68. [68]
    K. Huber, On the period length of generalized inversive pseudorandom number generators, Appl. Algebra Engrg. Comm. Comput. 5 (1994) 255–260.CrossRefzbMATHGoogle Scholar
  69. [69]
    T. Kato, L.-M. Wu, and N. Yanagihara, On a nonlinear congruential pseudorandom number generator, Math. Comp. 65 (1996) 227–233.CrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    T. Kato, L.-M. Wu, and N. Yanagihara The serial test for a nonlinear pseudorandom number generator, Math. Comp. 65 (1996) 761–769.CrossRefzbMATHMathSciNetGoogle Scholar
  71. [71]
    T. Kato, L.-M. Wu, and N. Yanagihara On the lattice structure of the modified inversive congruential generator with modulus 2’, Preprint.Google Scholar
  72. [72]
    J. Kiefer, On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961) 649–660.CrossRefzbMATHMathSciNetGoogle Scholar
  73. [73]
    D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, MA, 2nd ed., 1981.zbMATHGoogle Scholar
  74. [74]
    L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.Google Scholar
  75. [75]
    P. L’Ecuyer, Uniform random number generation, Ann. Oper. Res. 53 (1994) 77–120.CrossRefzbMATHMathSciNetGoogle Scholar
  76. [76]
    H. Leeb and S. Wegenkittl, Inversive and linear congruential pseudorandom number generators in empirical tests, ACM Trans. Modeling and Computer Simulation (to appear).Google Scholar
  77. [77]
    G.L. Mullen and P.J.-S. Shiue, Eds., Finite Fields, Coding Theory,and Advances in Communications and Computing, Dekker, New York, 1993.Google Scholar
  78. [78]
    H. Niederreiter, Remarks on nonlinear congruential pseudorandom numbers, Metrika 35 (1988) 321–328.CrossRefzbMATHMathSciNetGoogle Scholar
  79. [79]
    H. Niederreiter Statistical independence of nonlinear congruential pseudorandom numbers, Monatsh. Math. 106 (1988) 149–159.CrossRefzbMATHMathSciNetGoogle Scholar
  80. [80]
    H. Niederreiter The serial test for congruential pseudorandom numbers generated by inversions, Math. Comp. 52 (1989) 135–144.CrossRefzbMATHMathSciNetGoogle Scholar
  81. [81]
    Lower bounds for the discrepancy of inversive congruential pseudorandom num-bers, Math. Comp. 55 (1990) 277–287.CrossRefzbMATHMathSciNetGoogle Scholar
  82. [82]
    H. Niederreiter Finite fields and their applications, in: D. Dorninger, G. Eigenthaler, H.K. Kaiser, and W.B. Müller, Eds., Contributions to General Algebra 7, Teubner, Stuttgart, 1991, 251–264.Google Scholar
  83. [83]
    H. Niederreiter Recent trends in random number and random vector generation, Ann. Oper. Res. 31 (1991) 323–345.CrossRefzbMATHMathSciNetGoogle Scholar
  84. [84]
    H. Niederreiter New methods for pseudorandom number and pseudorandom vector generation, in: J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson, Eds., Proceedings of the 1992 Winter Simulation Conference, IEEE Press, Piscataway, NJ, 1992, 264–269.Google Scholar
  85. [85]
    H. Niederreiter Nonlinear methods for pseudorandom number and vector generation, in: G. Pflug and U. Dieter, Eds., Simulation and Optimization, Lecture Notes in Economics and Math. Systems 374, Springer, Berlin, 1992, 145–153.Google Scholar
  86. [86]
    H. Niederreiter Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadel-phia, PA, 1992.CrossRefGoogle Scholar
  87. [87]
    H. Niederreiter Finite fields, pseudorandom numbers, and quasirandom points, in: [77], 375–394.Google Scholar
  88. [88]
    H. Niederreiter Pseudorandom numbers and quasirandom points, Z. Angew. Math. Mech. 73 (1993) T648–T652.zbMATHMathSciNetGoogle Scholar
  89. [89]
    H. Niederreiter On a new class of pseudorandom numbers for simulation methods, J. Comput. Appl. Math. 56 (1994) 159–167.CrossRefzbMATHMathSciNetGoogle Scholar
  90. [90]
    H. Niederreiter Pseudorandom vector generation by the inversive method, ACM Trans. Mod- eling and Computer Simulation 4 (1994) 191–212.zbMATHGoogle Scholar
  91. [91]
    H. Niederreiter New developments in uniform pseudorandom number and vector generation, in: [93], 87–120.Google Scholar
  92. [92]
    H. Niederreiter Some linear and nonlinear methods for pseudorandom number generation, in: [1], 250–254.Google Scholar
  93. [93]
    H. Niederreiter and P.J.-S. Shiue, Eds., Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Lecture Notes in Statistics 106, Springer, New York, 1995.CrossRefGoogle Scholar
  94. [94]
    S. Wegenkittl, EmpiricalTesting of Pseudorandom Number Generators, Diplomarbeit, Salzburg, 1995 (Available at http://random.mat.shg.ac.at/team/

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jürgen Eichenauer-Herrmann
    • 1
  • Eva Herrmann
    • 1
  • Stefan Wegenkittl
    • 2
  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtDeutschland
  2. 2.Institut für MathematikUniversität SalzburgSalzburgAustria

Personalised recommendations