Advertisement

Quadratic Congruential Generators With Odd Composite Modulus

  • Sibylle Strandt
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

This paper deals with quadratic congruential pseudorandom number generators with odd composite moduli. The relation between these generators and compound quadratic congruential generators is pointed out. Upper and lower bounds for the discrepancy of the generated point sets consisting of all pairs of successive pseudorandom numbers over the full period are established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [EL86]
    J. Eichenauer and J. Lehn. A non—linear congruential pseudo random number generator. Statist. Papers, 27:315–326, 1986.zbMATHMathSciNetGoogle Scholar
  2. [EL87]
    J. Eichenauer and J. Lehn. On the structure of quadratic congruential sequences. Manuscripta Math., 58:129–140, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Eic92]
    J. Eichenauer-Herrmann. A remark on the discrepancy of quadratic congruential pseudorandom numbers. J. Comput. Appl. Math., 43:383–387, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [Eic94]
    J. Eichenauer-Herrmann. On the discrepancy of quadratic congruential pseudorandom numbers with power of two modulus. J. Comput. Appl. Math., 53:371–376, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [Eic95a]
    J. Eichenauer-Herrmann. Discrepancy bounds for nonoverlapping pairs of quadratic congruential pseudorandom numbers. Arch. Math., 65:362–368, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [Eic95b]
    J. Eichenauer-Herrmann. Quadratic congruential pseudorandom numbers: distribution of triples. J. Comput. Appl. Math., 62:239–253, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [Eic]
    J. Eichenauer-Herrmann. Quadratic congruential pseudorandom numbers: distribution of triples, II. J. Comput. Appl. Math. (to appear).Google Scholar
  8. [EH97]
    J. Eichenauer-Herrmann and E. Herrmann. A survey of quadratic and inversive congruential pseudorandom numbers. In this volume, 1997.Google Scholar
  9. [EN91]
    J. Eichenauer-Herrmann and H. Niederreiter. On the discrepancy of quadratic congruential pseudorandom numbers. J. Comput. Appl. Math., 34:243–249, 1991.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [EN95]
    J. Eichenauer-Herrmann and H. Niederreiter. An improved upper bound for the discrepancy of quadratic congruential pseudorandom numbers. Acta Arith., 69:193–198, 1995.zbMATHMathSciNetGoogle Scholar
  11. [Emm97]
    F. Emmerich. Equidistribution properties of quadratic congruential pseudorandom numbers. J. Comput. Appl. Math., 79:207–214, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [Kie61]
    J. Kiefer. On large deviations of the empiric d.f. of vector chance variables and a law of the iterated logarithm. Pacific J. Math., 11:649–660, 1961.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [Nie92]
    H. Niederreiter. Random Number Generation and Quasi—onte Carlo Methods. SIAM, Philadelphia, PA, 1992.CrossRefGoogle Scholar
  14. [Nie95]
    H. Niederreiter. New developments in uniform pseudorandom number and vector generation. In Monte Carlo and Quasi—Monte Carlo Methods in Scientific Computing, Lecture Notes in Statis-tics, Vol. 106, pages 87–120, New York, 1995. Springer.Google Scholar
  15. [Str94]
    S. Strandt. Diskrepanzabschätzung bei quadratischen Kongruenzgeneratoren zur Erzeugung von Pseudozufallszahlen. Diplomarbeit, Technische Hochschule Darmstadt, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sibylle Strandt
    • 1
  1. 1.Technische Hochschule DarmstadtFachbereich MathematikDarmstadtGermany

Personalised recommendations