Skip to main content

Quasi-Monte Carlo Methods for Integral Equations

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 127))

Abstract

In this paper, we establish a deterministic error bound for estimating a functional of the solution of the integral transport equation via random walks that improves an earlier result of Chelson generalizing the Koksma-Hlawka inequality for finite dimensional quadrature. We solve such problems by simulation, using sequences that combine pseudorandom and quasirandom elements in the construction of the random walks in order to take advantage of the superior uniformity properties of quasirandom numbers and the statistical (independence) properties of pseudorandom numbers. We discuss implementation issues that arise when these hybrid sequences are used in practice. The quasi-Monte Carlo techniques described in this paper have the potential to improve upon the convergence rates of both (conventional) Monte Carlo and quasi-Monte Carlo simulations in many problems. Recent model problem computations confirm these improved convergence properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-SIAM, 1992.

    Book  Google Scholar 

  2. I.H. Sloan and S. Joe, Lattice Methods for Multiple Integration, Clarendon Press, Oxford, 1994.

    Book  Google Scholar 

  3. N.M. Korobov, Number-Theoretic Methods in Approximate Analysis, Fizmatig, Moscow, 1963. (in Russian).

    Google Scholar 

  4. L.K. Hua and Y. Wang, Applications of Number Theory to Numerical Analysis, Springer, Berlin, 1981.

    Google Scholar 

  5. A. Keller, “A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting”, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. Shiue, eds.), vol. 106, Springer, 1995.

    Google Scholar 

  6. P. Chelson,“Quasi-Random Techniques for Monte Carlo Methods,” Ph.D. dissertation, The Claremont Graduate School, 1976.

    Google Scholar 

  7. J. Spanier, “Quasi-Monte Carlo Methods for Particle Transport Problems”, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. Shiue, eds.), vol. 106, Springer, 1995.

    Google Scholar 

  8. J. Spanier and E.M. Gelbard, Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley Pub. Co., 1969.

    Google Scholar 

  9. L. Li, “Quasi-Monte Carlo Methods for Transport Equations”, Ph.D. dissertation, The Claremont Graduate School, 1995.

    Google Scholar 

  10. E. Hlawka and R. Mück, “Uber eine Transformation von Gleichverteilen Folgen II, Computing, (1972).

    Google Scholar 

  11. J. Spanier, “An Analytic Approach to Variance Reduction,” SIAM J. Appl. Math., 18, (1970).

    Google Scholar 

  12. E. Maize, “Contributions to the Theory of Error Reduction in Quasi-Monte Carlo Methods”, Ph.D. dissertation, The Claremont Graduate School, 1981.

    Google Scholar 

  13. J. Spanier and E.H. Maize, “Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples”, Siam Rev., 36 18–44, (1994).

    Article  MathSciNet  Google Scholar 

  14. D.E. Knuth, The Art of Computer Programming, Vol.,’L: Seminumerical Algorithms, 2nd ed., Addison-Wesley, 1981.

    Google Scholar 

  15. G.A. Mikhailov, Optimization of Weighted Monte Carlo Methods, Springer-Verlag, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this paper

Cite this paper

Spanier, J., Li, L. (1998). Quasi-Monte Carlo Methods for Integral Equations. In: Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol 127. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1690-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1690-2_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98335-6

  • Online ISBN: 978-1-4612-1690-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics