Weak limits for the diaphony

  • Hannes Leeb
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

In one dimension, we represent the diaphony as the L2-norm of a random process which is found to converge weakly to a second order stationary Gaussian; up to scaling, this implies the asymptotic distributions of the diaphony and the *-discrepancy to coincide. Further, we show that properly normalized, the diaphony of n points in dimension d is asymptotically Gaussian if both n and d increase with a certain rate.

Keywords

Covariance Lime Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD52]
    T.W. Anderson and D.A. Darling. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Stat.,23:193–212, 1952.CrossRefMATHMathSciNetGoogle Scholar
  2. [And93]
    T.W. Anderson. Goodness of fit tests for spectral distributions. Ann. Statist., 21:830–847, 1993.CrossRefMATHMathSciNetGoogle Scholar
  3. [BB83]
    P.J. Bickel and L. Breiman. Sums of functions of nearest neighbor distances, moment bounds, limit theorems and a goodness of fit test. Ann. Probab, 11:185–214, 1983.CrossRefMATHMathSciNetGoogle Scholar
  4. [Bil68]
    P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, Inc., New York, 1968.MATHGoogle Scholar
  5. [Bi186]
    P. Billingsley. Probability and Measure. John Wiley & Sons, Inc., New York, 2nd edition, 1986.MATHGoogle Scholar
  6. [CF93]
    H. Chaix and H. Faure. Discrepancy and diaphony in dimension one (French). Acta Arith., 63:103–141, 1993.MATHMathSciNetGoogle Scholar
  7. [Don52]
    M.D. Donsker. Justification and extension of Doob’s heuristic approach to the Komogorov-Smirnov theorems. Ann. Math. Stat., 23:277–281, 1952.CrossRefMATHMathSciNetGoogle Scholar
  8. [Doo49]
    J.L. Doob. Heuristic approach to the Kolmogorov-Smirnov theoreins. Ann. Math. Stat., 20:393–403, 1949.CrossRefMATHMathSciNetGoogle Scholar
  9. [He196]
    P. Hellekalek. On correlation analysis of pseudorandom numbers. submitted to the Proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 1996.Google Scholar
  10. [111180]
    P. Hall and C.C. Heyde. Martingale Limit Theory and its Application. Probability and Mathematical Statistics. Academic Press, Inc., San Diego, California, 1980.Google Scholar
  11. [HL96]
    P. Hellekalek and H. Leeb. Dyadic diaphony. Acta Arith.,to appear, 1996.Google Scholar
  12. [JHK96]
    F. James, J. Hoogland, and R. Kleiss. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers. to appear in Comp. Phys. Comm., 1996.Google Scholar
  13. [Kle96]
    R. Kleiss. private communications, 1996.Google Scholar
  14. [KS47]
    M. Kac and A.J.F. Siegert. An explicit representation of a stationary Gaussian process. Ann. Math. Stat., 18:438–442, 1947.CrossRefMATHMathSciNetGoogle Scholar
  15. [Lee96]
    H. Leeb. The asymptotic distribution of diaphony in one dimension. G-96–52, GERAD - École des Hautes Etudes Commerciales, Montréal, 1996.Google Scholar
  16. [Nie92]
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.CrossRefMATHGoogle Scholar
  17. [Wat61]
    G.S. Watson. Goodness—of—fit tests on a circle. Biometrika, 48:109–114, 1961.MATHMathSciNetGoogle Scholar
  18. [Zin76]
    P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II, 185:121–132, 1976.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Hannes Leeb
    • 1
  1. 1.Hannes Leeb Institut für MathematikUniversität SalzburgSalzburgAustria

Personalised recommendations