Quasi-Monte Carlo, Discrepancies and Error Estimates

  • Jiri Hoogland
  • Fred James
  • Ronald Kleiss
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 127)


We present a survey of our recent work on the problem of defining an estimate for the error in Quasi-Monte Carlo integration. The key issue turns out to be the definition of an ensemble of quasi-random point sets that, on the one hand, includes a sufficiency of equivalent point sets, and on the other hand uses information on the degree of uniformity of the point set actually used, in the form of a discrepancy or diaphony. A few examples of such discrepancies are given. We derive the distribution of our error estimate in the limit of large number of points. In many cases, Gaussian limits are obtained. We also present numerical results for the L2-discrepancy for a number of quasi-random sequences.


Quadratic Discrepancy Orthonormal Function Orthonormal Function Base Reasonable Imitation Niederreiter Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Niederreiter, Random number generation and Quasi-Monte Carlo methods, (SIAM, Philadelphia, 1992).CrossRefzbMATHGoogle Scholar
  2. [2]
    H. Wozniakoski, Average-case complexity of multivariate integration,Bull. AMS 24(1991)185–194.Google Scholar
  3. [3]
    R. Kleiss, Average-case complexity distributions: a generalization of the Wozniakowski lemma for multidimensional numerical integration, Comp. Phys. Comm. 71(1992) 39–53.CrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Paskov, Average-case complexity of multivariate integration for smooth functions, J. Complexity 9 (1993) 291–312.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    J.K. Hoogland, Radiative corrections,Quasi-Monte Carlo and Discrepancy, Ph.D. thesis, University of Amsterdam, 1996.Google Scholar
  6. [6]
    F. James, J. Hoogland and R. Kleiss, Multidimensional sampling for simulation and integration: measures, discrepancies and quasi-random numbers, Comp. Phys. Comm. 99 (1997) 180–220.CrossRefzbMATHGoogle Scholar
  7. [7]
    J. Hoogland and R. Kleiss, Discrepancy-based error estimates for Quasi-Monte Carlo. I: General formalism, Comp. Phys. Comm. 98 (1996) 111–127.CrossRefzbMATHGoogle Scholar
  8. [8]
    J. Hoogland and R. Kleiss, Discrepancy-based error estimates for Quasi-Monte Carlo. II: Results for one dimension, Comp. Phys. Comm. 98(1996)128–136.CrossRefzbMATHGoogle Scholar
  9. [9]
    J. Hoogland and R. Kleiss, Discrepancy-based error estimates for Quasi-Monte Carlo. III: Error distributions and central limits, Comp. Phys. Comm. 101(1997) (in print).Google Scholar
  10. [10]
    M. Löscher, A portable high-quality random number generator for lattice field theory simulations, Comp. Phys. Comm. 79 (1994) 100–110; F. James, RANLUX: a FORTRAN implementation of the high-quality pseudo-random number generator of Löscher, Comp. Phys. Comm. 79 (1994) 111–118.Google Scholar
  11. [11]
    P. Bratley, B.L Fox and H. Niederreiter, Algorithm 738: Program to generate Niederreiter’s low-discrepancy sequences, ACM Trans.Math.Software 20 (1994) 494–495.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jiri Hoogland
    • 1
  • Fred James
    • 2
  • Ronald Kleiss
    • 3
  1. 1.NIKHEFThe Netherlands
  2. 2.CERNGenevaSwitzerland
  3. 3.University of NijmegenNijmegenThe Netherlands

Personalised recommendations