On correlation analysis of pseudorandom numbers

  • Peter Hellekalek
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 127)


In this paper we discuss the theoretical analysis of correlations between pseudorandom numbers. We present a new concept that allows to relate the discrepancy approach to the spectral test. Up to now, those two figures of merit for pseudorandom number generators were viewed as widely different. We discuss the most important examples of our approach as well as the underlying technique.


Random Number Generator Pseudorandom Number Integer Vector Pseudorandom Number Generator Bernoulli Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AH94]
    T. Auer and P. Hellekalek. Independence of uniform pseudorandom numbers, part II: empirical results. In M. Vajtersic and P. Zinterhof, editors, Proceedings of the International Workshop Parallel Numerics ‘84, Smolenice, pages 59–73. Slovak Academy of Sciences, Bratislava, 1994.Google Scholar
  2. [CM67]
    R.R. Coveyou and R.D. MacPherson. Fourier analysis of uniform random number generators. J. Assoc. Comput. Mach., 14:100–119, 1967.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Com95]
    A. Compagner. Operational conditions for random-number generation. Phys. Review E, 52:5634–5645, 1995.CrossRefGoogle Scholar
  4. [DMP90]
    A. De Matteis and S. Pagnutti. Long-range correlations in linear and non-linear random number generators. Parallel Computing, 14:207–210, 1990.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [EH93]
    J. Eichenauer-Herrmann. Statistical independence of a new class of inversive congruential pseudorandom numbers. Math. Comp., 60:375–384, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [He194]
    P. Hellekalek. General discrepancy estimates: the Walsh function system. Acta Arith., 67:209–218, 1994.zbMATHMathSciNetGoogle Scholar
  7. [He195a]
    P. Hellekalek. Correlations between pseudorandom numbers: theory and numerical practice. In P. Hellekalek, G. Larcher, and P. Zinterhof, editors, Proceedings of the 1st Salzburg Minisymposium on Pseudorandom Number Generation and Quasi-Monte Carlo Methods,Salzburg, 1994, volume ACPC/TR 95–4 of Technical Report Series, pages 43–73. ACPC — Austrian Center for Parallel Computation, University of Vienna, 1995.Google Scholar
  8. [He195b]
    P. Hellekalek. General discrepancy estimates III: the ErdösTurán-Koksma inequality for the Haar function system. Monatsh. Math., 120:25–45, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [HL96]
    P. Hellekalek and H. Leeb. Dyadic diaphony. Acta Arith., 1996. To appear.Google Scholar
  10. [HN96]
    P. Hellekalek and H. Niederreiter. The weighted spectral test: diaphony. 1996. Submitted to ACM Trans. Modeling and Computer Simulation.Google Scholar
  11. [JHK96]
    F. James, J. Hoogland, and R. Kleiss. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers. Preprint submitted to Computer Physics Communications, 1996.Google Scholar
  12. [KN74]
    L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley, New York, 1974.zbMATHGoogle Scholar
  13. [Knu67]
    D.E. Knuth. The Art of Computer Programming Vol. 2. Addison-Wesley, Reading, Mass., 1967.Google Scholar
  14. [Knu81]
    D.E. Knuth. The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading, Mass., second edition, 1981.zbMATHGoogle Scholar
  15. [L’E94]
    P. L’Ecuyer. Uniform random number generation. Ann. Oper. Res., 53:77–120, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [Lee96]
    H. Leeb. A weak law for diaphony. Rist++ 13, Research Institute for Software Technology, University of Salzburg, 1996.Google Scholar
  17. [LW96]
    H. Leeb and S. Wegenkittl. Inversive and linear congruential pseudorandom number generators in empirical tests. To appear in ACM Trans. Modeling and Computer Simulation, 1996.Google Scholar
  18. [Nie92]
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.CrossRefzbMATHGoogle Scholar
  19. [Nie94]
    H. Niederreiter. On a new class of pseudorandom numbers for simulation methods. J. Comp. Appl. Math., 56:159–167, 1994.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [Nie95]
    H. Niederreiter. New developments in uniform pseudorandom number and vector generation. In H. Niederreiter and P.J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes in Statistics, pages 87–120. Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
  21. [PP92]
    O. E. Percus and J. K. Percus. An expanded set of correlation tests for linear congruential random number generators. Combin.Prob. Comput., 1:161–168, 1992.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [Ste80]
    H. Stegbuchner. Zur quantitativen Theorie der Gleichverteilung mod 1. Arbeitsberichte, Mathematisches Institut der Universität Salzburg, 1980.Google Scholar
  23. [Tez87]
    S. Tezuka. Walsh-spectral test for GFSR pseudorandom numbers. Comm. ACM., 30:731–735, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [Yue77]
    C.-K. Yuen. Testing random number generators by Walsh transform. IEEE Trans. Comput., 26:329–333, 1977.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [Zin76]
    P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österr. Akad. Wiss. Math.-Natur. Kl. II, 185:121–132,1976.zbMATHMathSciNetGoogle Scholar
  26. [ZS78]
    P. Zinterhof and H. Stegbuchner. Trigonometrische Approxima-tion mit Gleichverteilungsmethoden. Studio Sci. Math. Hungar., 13:273–289, 1978.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter Hellekalek
    • 1
  1. 1.Institut für MathematikUniversität SalzburgSalzburgAustria

Personalised recommendations