Advertisement

Computing Discrepancies Related to Spaces of Smooth Periodic Functions

  • Karin Frank
  • Stefan Heinrich
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

A notion of discrepancy is introduced, which represents the integration error on spaces of r-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical L2-discrepancy as well as r-smooth versions of it introduced recently by Paskov [Pas93]. Based on previous work [FH96], we develop an efficient algorithm for computing periodic discrepancies for quadrature formulas possessing certain tensor product structures, in particular, for Smolyak quadrature rules (also called sparse grid methods). Furthermore, fast algorithms of computing periodic discrepancies for lattice rules can easily be derived from well—known properties of lattices. On this basis we carry out numerical comparisons of discrepancies between Smolyak and lattice rules.

Keywords

Quadrature Formula Quadrature Rule Reproduce Kernel Hilbert Space Sparse Grid Integration Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bra77]
    H. Brass. Quadraturverfahren. Vandenhoeck & Rupprecht, Göttingen, 1977.zbMATHGoogle Scholar
  2. [FH96]
    K. Frank and S. Heinrich. Computing discrepancies of Smolyak quadrature rules. J. Complexity, 12:287–314, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [Fra95]
    K. Frank. Complexity of local solution of multivariate integral equations. J. Complexity, 11:416–434, 1995.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [GR65]
    I.S. Gradshteyn and I.M. Ryshik. Tables of integrals, series and products. Academic Press, NY, London, 1965.Google Scholar
  5. [Hab83]
    S. Haber. Parameters for integrating periodic functions of several variables. Math. Comp.,41:115–129, 1983.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [Hei95]
    S. Heinrich. Efficient algorithms for computing the L2 discrep-ancy. TR 267–95 Universität Kaiserslautern, 1995. (to appear in Math. Comp.).Google Scholar
  7. [H1a62]
    E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale.Monatsh. Math., 66:140–151, 1962.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [Kor63]
    N.M. Korobov. Number-Theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow, 1963. (in Russian).zbMATHGoogle Scholar
  9. [Nie92]
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF 63. SIAM, 1992.CrossRefzbMATHGoogle Scholar
  10. [NR96]
    E. Novak and K. Ritter. High dimensional integration of smooth functions over cubes. to appear in Num. Math., 1996.Google Scholar
  11. [Pas93]
    S.H. Paskov. Average case complexity of multivariate integra-tion for smooth functions. J. Complexity, 9:291–312, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [SL89]
    I.H. Sloan and J.N. Lyness. The representation of lattice quadratures as multiple sums. Math. Comp., 52:81–94, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [Smo63]
    S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions (in Russian). Dokl. Akad. Nauk SSSR, 148:1042–1045, 1963. English transi.: Soviet. Mat. Dokl. 148, 240–243.zbMATHGoogle Scholar
  14. [SW90]
    I.H. Sloan and L. Walsh. A computer search of rank-2 lattice rules for multidimensional quadrature. Math. Comp., 54:281–302, 1990.zbMATHMathSciNetGoogle Scholar
  15. [TWW88]
    J. F. Traub, G. W. Wasilkowski, and H. Woiniakowski. Information-Based Complexity. Academic Press, New York, 1988.zbMATHGoogle Scholar
  16. [War72]
    T.T. Warnock. Computational investigations of low discrepancy point sets. In S.K. Zaremba, editor, Applications of Number Theory to Numerical Analysis. Academic Press, New York, 1972.Google Scholar
  17. [WW95]
    G.W. Wasilkowski and H. Woiniakowski. Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity, 11:1–56, 1995.CrossRefMathSciNetGoogle Scholar
  18. [Zin76]
    P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Österr. Akad. Wiss. Math. Nat. Kl., S.-Ber., Abt. II 185:121–132, 1976.zbMATHMathSciNetGoogle Scholar
  19. [ZS78]
    P. Zinterhof and H. Stegbuchner. Trigonometrische Approxi-mation mit Gleichverteilungsmethoden. Studia Sci. Math. Hun-gar., 13:273–289, 1978.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Karin Frank
    • 1
  • Stefan Heinrich
    • 2
  1. 1.RUSUniversität StuttgartStuttgartGermany
  2. 2.FB InformatikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations