Discrepancy lower bounds for special quasi-random sequences

  • Henri Faure
Conference paper
Part of the Lecture Notes in Statistics book series (LNS, volume 127)

Abstract

Lower bounds for the discrepancy of special quasi-random sequences are given, showing that these sequences have the exact order (Log N) 2 within a multiplicative constant factor.

Keywords

Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Beck, A two dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution, Compositio Math., n° 72, 1989, p.269–339.Google Scholar
  2. [2]
    H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith., XLI, 1982, p.337–351.Google Scholar
  3. [3]
    H. Faure, Discrepancy lower bound for two dimensional quasi-random sequences, Proceedings Workshop on Quasi-Monte Carlo Methods and Their Applications,K.T. Fang and F.J. Hickernell Ed., 1995, p.173–178.Google Scholar
  4. [4]
    H. Faure ET H. Chaix, Minoration de discrépance en dimension deux, C.R.Acad.Paris, série 1, t.319, 1994, p.1–4.MATHMathSciNetGoogle Scholar
  5. [5]
    H. Faure ET H. Chaix, Minoration de discrépance en dimension deux, Acta Arith., LXXVI.2, 1996, p.149–164.MathSciNetGoogle Scholar
  6. [6]
    G. Halàsz, On Roth’s method in the theory of irregularities of point distribution, Recent Progress in Analytic Number Theory, Academic Press, n° 2, 1981, p.79–94.Google Scholar
  7. [7]
    J.H. Halton, On the efficiency of certain quasi-random points in evaluating multi-dimensional integrals, Numer. Math., n° 2, 1960, p.84–90.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    H. Niederreiter, Point sets and sequences with small discrepancy,Monatsh. Math., n° 104, 1987, p.273–337.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    H. Niederreiter, Low discrepancy and low dispersion sequences, J. Number Theory, n° 30, 1988, p.51–70.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    H. Niederreiter and C.P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith., LXXII,1995.3, p.281–298.MathSciNetGoogle Scholar
  11. [11]
    H. Niederreiter and C.P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields and their Appl., 2, 1996, p.241–273.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    K.F. Roth, On irregularities of distribution, Mathematika, n° 1, 1954, p.73–79.Google Scholar
  13. [13]
    W.M. Schmidt, Irregularities of distribution, Acta Arith., XXI, 1972, p.45–50.Google Scholar
  14. [14]
    I.M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comp. math. and Math. Physics, n° 7, 1967, p.86–112.CrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Srinivasan, On two dimensional Hammersley sequences, J. of Number Theory, n° 10, 1978, p.421–429.Google Scholar
  16. [16]
    C.P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith., LXXIII.1, 1995, p.87–102.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Henri Faure
    • 1
    • 2
  1. 1.Institut Mathématique de LuminyCNRS U.P.R. 9016Marseille Cedex 09France
  2. 2.C.M.IUniversité de ProvenceMarseille, Cedex 13France

Personalised recommendations