Discrepancy lower bounds for special quasi-random sequences

  • Henri Faure
Part of the Lecture Notes in Statistics book series (LNS, volume 127)


Lower bounds for the discrepancy of special quasi-random sequences are given, showing that these sequences have the exact order (Log N) 2 within a multiplicative constant factor.


Finite Field Analytic Number Theory Exact Order Elementary Interval Multiplicative Constant Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Beck, A two dimensional van Aardenne-Ehrenfest theorem in irregularities of distribution, Compositio Math., n° 72, 1989, p.269–339.Google Scholar
  2. [2]
    H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith., XLI, 1982, p.337–351.Google Scholar
  3. [3]
    H. Faure, Discrepancy lower bound for two dimensional quasi-random sequences, Proceedings Workshop on Quasi-Monte Carlo Methods and Their Applications,K.T. Fang and F.J. Hickernell Ed., 1995, p.173–178.Google Scholar
  4. [4]
    H. Faure ET H. Chaix, Minoration de discrépance en dimension deux, C.R.Acad.Paris, série 1, t.319, 1994, p.1–4.zbMATHMathSciNetGoogle Scholar
  5. [5]
    H. Faure ET H. Chaix, Minoration de discrépance en dimension deux, Acta Arith., LXXVI.2, 1996, p.149–164.MathSciNetGoogle Scholar
  6. [6]
    G. Halàsz, On Roth’s method in the theory of irregularities of point distribution, Recent Progress in Analytic Number Theory, Academic Press, n° 2, 1981, p.79–94.Google Scholar
  7. [7]
    J.H. Halton, On the efficiency of certain quasi-random points in evaluating multi-dimensional integrals, Numer. Math., n° 2, 1960, p.84–90.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    H. Niederreiter, Point sets and sequences with small discrepancy,Monatsh. Math., n° 104, 1987, p.273–337.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    H. Niederreiter, Low discrepancy and low dispersion sequences, J. Number Theory, n° 30, 1988, p.51–70.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    H. Niederreiter and C.P. Xing, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arith., LXXII,1995.3, p.281–298.MathSciNetGoogle Scholar
  11. [11]
    H. Niederreiter and C.P. Xing, Low-discrepancy sequences and global function fields with many rational places, Finite Fields and their Appl., 2, 1996, p.241–273.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    K.F. Roth, On irregularities of distribution, Mathematika, n° 1, 1954, p.73–79.Google Scholar
  13. [13]
    W.M. Schmidt, Irregularities of distribution, Acta Arith., XXI, 1972, p.45–50.Google Scholar
  14. [14]
    I.M. Sobol’, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comp. math. and Math. Physics, n° 7, 1967, p.86–112.CrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Srinivasan, On two dimensional Hammersley sequences, J. of Number Theory, n° 10, 1978, p.421–429.Google Scholar
  16. [16]
    C.P. Xing and H. Niederreiter, A construction of low-discrepancy sequences using global function fields, Acta Arith., LXXIII.1, 1995, p.87–102.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Henri Faure
    • 1
    • 2
  1. 1.Institut Mathématique de LuminyCNRS U.P.R. 9016Marseille Cedex 09France
  2. 2.C.M.IUniversité de ProvenceMarseille, Cedex 13France

Personalised recommendations