Construction of digital nets from BCH-codes

  • Yves Edel
  • Jürgen Bierbrauer
Part of the Lecture Notes in Statistics book series (LNS, volume 127)


We establish a link between the theory of error-correcting codes and the theory of (t, m, s)-nets. This leads to the fundamental problem of net embeddings of linear codes. Our main result is the construction of four infinite families of digital (t, m, s)-nets based on BCH- codes.


Orthogonal Array Finite Field Linear Code Cyclic Code Infinite Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. J. Adams and B. L. Shader, A construction for (t,m, s)-nets in base q, SIAM Journal of Discrete Mathematics, to appear.Google Scholar
  2. [2]
    A. T. Clayman, K. M. Lawrence, G. L. Mullen, H. Niederreiter, and N. J. A. Sloane, Updated tables of parameters of (t,m, s)-nets, manuscript.Google Scholar
  3. [3]
    G. Larcher, H. Niederreiter, and W.C.H. Schmid, Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration, Monatshefte Mathematik 121 (1996), 231–253.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    K. M. Lawrence, A. Mahalanabis, G. L. Mullen, and W.C.H. Schmid, Construction of digital (t,m, s) -nets from linear codes, in S. Cohen and H. Niederreiter, editors, Finite Fields and Applications (Glasgow, 1995), volume 233 of Lecture Notes Series of the London Mathematical Society, pages 189–208. Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar
  5. [5]
    K. M. Lawrence, A combinatorial characterization of (t, m,s)-nets in base b, J. Comb. Designs 4 (1996),275–293.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    G. L. Mullen and W. C.H. SchmidAn equivalence between (t, m, s)-nets and strongly orthogonal hypercubes, Journal of Combinatorial Theory A 76 (1996), 164–174.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    H. Niederreiter, Point sets and sequences with small discrepancy, Monatshefte Mathematik 104 (1987),273–337.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, Number 63 in CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.CrossRefzbMATHGoogle Scholar
  9. [9]
    W. Ch. Schmid and R. Wolf, Bounds for digital nets and sequences, Acta Arithmetica 78(1997),377–399.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Yves Edel
    • 1
  • Jürgen Bierbrauer
    • 2
  1. 1.Mathematisches Institut der UniversitätHeidelbergGermany
  2. 2.Department of Mathematical SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations