Advertisement

Evaluation of the Neonate with a Potential Metabolic Defect

  • Pinar T. Ozand

Abstract

The significant metabolic transition that the neonate experiences in the first few days after birth, makes him particularly vulnerable to the manifestation of a disease of intermediary metabolism. Such disorders as propionic acidemia,1 methylmalonic acidemia,2 the urea cycle diseases,3 fructose-1,6-diphosphatase deficiency,4 and galactosemia (PGa1 transferase deficiency)5 may lead to severe symptomatology within 2 to 3 days of the neonatal period. Severe forms of fatty acid oxidation6 and respiratory chain diseases disorders7 appear immediately after birth and may cause morbidity while the neonatologist is attempting to make a diagnosis. To make matters worse, cell-mediated immunodeficiency associated with some of these disorders may cause early neonatal bronchopneumonia or sepsis, confusing the clinician who, while treating the infection, misses the underlying metabolic disease, resulting in a neurologically crippled infant. Many of these diseases cause enough alterations in the acid-base balance, glucose, and ammonia homeostasis that a rapid metabolic workup is necessary to diagnose and appropriately treat the neonate before irreversible damage occurs.

Keywords

Maple Syrup Urine Disease Maple Syrup Urine Disease Zellweger Syndrome Propionic Acidemia Methylmalonic Acidemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolf B, Hsia YE, Sweetman L, et al. Propionic acidemia: a clinical update. J Pediatr 1981; 99: 335–346.CrossRefGoogle Scholar
  2. 2.
    Stokke O, Eldjarn L, Norum KR, et al. Methylmalonic acidemia: a new inborn error of metabolism which may cause fatal acidosis in the neonatal period. Scand J Lab Clin Invest 1967; 20: 313–328.CrossRefGoogle Scholar
  3. 3.
    Brusilow SW, Batshaw ML, Waber L. Neonatal hyperammonemic coma. Adv Pediatr 1982; 29: 69–103.PubMedGoogle Scholar
  4. 4.
    Buhrdel P, Bohme H-J, Didt L. Biochemical and clinical observations in four patients with fructose-1,6diphospatase deficiency. Eur J Pediatr 1990; 149: 574–576.PubMedCrossRefGoogle Scholar
  5. 5.
    Gitzelmann R, Hansen RG. Galactose metabolism, hereditary defects and their clinical significance. In: Burman D, Holton JB, Pennock CA, eds. Inherited disorders of carbohydrate metabolism. Baltimore: University Park Press, 1980: 61–101.CrossRefGoogle Scholar
  6. 6.
    Stanley CA. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr 1987; 34: 59–88.PubMedGoogle Scholar
  7. 7.
    Kuroda Y, Naito E, Takeda E, et al. Congenital lactic acidosis. Enzyme 1987; 38: 108–114.PubMedGoogle Scholar
  8. 8.
    Fisher CR, Chuang JL, Cox RP, et al. Maple syrup urine disease in Mennonites. Evidence that the Y393N mutation in El alpha impedes assembly of the El component of branched-chain alpha-keto acid dehydrogenase complex. J Clin Invest 1991; 88: 1034–1037.PubMedCrossRefGoogle Scholar
  9. 9.
    Ozand PT, Al Aqeel A, Gascon G, et al. 3-Hydroxy3-methylglutaryl-coenzyme A (HMG-CoA) lyase deficiency in Saudi Arabia. J Inherited Metab Dis 1991; 14: 174–188.PubMedCrossRefGoogle Scholar
  10. 10.
    Robinson BH, MacMillan H, Petrova-Benedict R, et al. Variable clinical presentation in patients with deflective E, component of pyruvate dehydrogenase complex. A review of 30 cases with a defect in the E, component of the complex. J Pediatr 1987; 111: 525–533.PubMedCrossRefGoogle Scholar
  11. 11.
    Rahbeeni Z, Ozand PT, Rashed M, et al. 4-Hydroxybutyric aciduria. Brain Dev 1994; 16 (suppl): 64–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Peinemann F, Danner DJ. Maple syrup urine disease: 1954 to 1993. J Inherited Metab Dis 1994; 17: 3–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Mantovani JF, Naidich TP, Prensky AL, et al. MSUD presentation with pseudotumor cerebri and CT abnormalities. J Pediatr 1980; 96: 279–281.PubMedCrossRefGoogle Scholar
  14. 14.
    Brismar J, Aqeel A, Brismar G, et al. Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. AJNR 1990; 11: 1219–1228.PubMedGoogle Scholar
  15. 15.
    Narisawa K, Wada Y, Saito T, et al. Infantile type of homocystinuria with N5, 10-methylenetetrahydrofolate reductase defect. Tohoku J Exp Med 1977; 121: 185–194.Google Scholar
  16. 16.
    Mitchell G, Saudubray JM, Gubler MC, et al. Congenital anomalies in glutaric aciduria type 2. J Pediatr 1984; 104: 961–962.PubMedGoogle Scholar
  17. 17.
    Schutgens RB, Heymans HA, Wanders RJ, et al. Peroxisomal disorders: a newly recognized group of genetic diseases. Eur J Pediatr 1986; 144: 430–440.PubMedCrossRefGoogle Scholar
  18. 18.
    Lui K, Commens C, Choong R, et al. Collodion babies with Gaucher’s disease. Arch Dis Child 1988; 63: 854–856.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Brien JS. Ganglioside storage diseases. Adv Hum Genet 1972; 3: 39–98.PubMedGoogle Scholar
  20. 20.
    Stangenberg M, Lingman G, Roberts G, et al. Brief clinical report: mucopolysaccharidosis VII as a cause of fetal hydrops in early pregnancy. Am J Med Genet 1992; 44: 142–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Beck M, Bender SW, Reiter HL, et al. Neuraminidase deficiency presenting as non-immune hydrops fetalis. Eur J Pediatr 1984; 143: 135–139.PubMedCrossRefGoogle Scholar
  22. 22.
    Kleijer WJ, Hoogeveen A, Verheijen FW, et al. Prenatal diagnosis of sialidosis with combined neuraminidase and ß-galactosidase deficiency. Clin Genet 1979; 16: 60–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Sprigz RA, Doughty RA, Spackman TJ, et al. Neonatal presentation of I-cell disease. J Pediatr 1978; 93: 954–958.PubMedCrossRefGoogle Scholar
  24. 24.
    Millington DS, Terada N, Chace DH, et al. New developments in fatty acid oxidation. In: Coates PM, Tanaka K, eds. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. New York: Wiley-Liss 1992; 339–354.Google Scholar
  25. 25.
    Rashed MS, Ozand PT, Bucknall MP, et al. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res 1995; 38: 324–331.PubMedCrossRefGoogle Scholar
  26. 26.
    Ozand PT, Rashed M, Gascon GG, et al. Unusual presentations of propionic acidemia. Brain Dev 1994; 16 (suppl): 46–57.PubMedCrossRefGoogle Scholar
  27. 27.
    Lehnert W, Junker A, Wehinger H, et al. Propionic Ä cidamie mit Hypertrophischer Pylorusstenose and Entgleisungen im Glukosstoffwechsel. Monatsschr Kinderheilkd 1980; 128: 720–723.PubMedGoogle Scholar
  28. 28.
    Saudubray JM, Ogier H, Bonnefont JP, et al. Clinical approach to inherited metabolic diseases in the neonatal period. A 20 year survey. J Inherited Metab Dis 1989; 12 (suppl 1): 25–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Amendt BA, Greene C, Sweetman L, et al. Short chain acyl CoA dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest 1987; 79: 1303–1309.PubMedCrossRefGoogle Scholar
  30. 30.
    Gray RG, Patrick AD, Preston FE, et al. Acute hereditary tyrosinemia type 1: clinical, biochemical and haematological studies in twins. J Inherited Metab Dis 1981; 4: 37–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson BH, Taylor J, Sherwood WG. The genetic heterogeneity of lactic acidosis: occurrence of recognizable inborn errors of metabolism in a pediatric population with lactic acidosis. Pediatr Res 1980; 14: 956–962.PubMedCrossRefGoogle Scholar
  32. 32.
    Packman S, Sweetman L, Baker H, et al. The neonatal form of biotin responsive multiple carboxylase deficiency. J Pediatr 1981; 99: 418–420.PubMedCrossRefGoogle Scholar
  33. 33.
    Lombes A, Romero NB, Touati G, et al. Clinical and molecular heterogeneity of cytochrome c oxidase deficiency in the newborn. J Inherited Metab Dis 1996; 19: 286–295.PubMedCrossRefGoogle Scholar
  34. 34.
    Gibson KM, Nyhan WL, Sweetman L, et al. 3Methylglutaconic aciduria: a phenotype in which the activity of 3-methylglutaconyl-coenzyme A hydratase is normal. Eur J Pediatr 1988; 148: 76–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Kang ES, Snodgrass PJ, Gerald PS. Ornithine transcarbamylase deficiency in the newborn infant. J Pediatr 1973; 82: 642–649.PubMedCrossRefGoogle Scholar
  36. 36.
    Hommes FA, DeGroot CJ, Wilmink CW, et al. Carbamylphosphate synthetase deficiency in an infant with severe cerebral damage. Arch Dis Child 1969; 44: 688–693.PubMedCrossRefGoogle Scholar
  37. 37.
    Danks DM, Tippett P, Zentner G. Severe neonatal citrullinemia. Arch Dis Child 1974; 49: 579–581.PubMedCrossRefGoogle Scholar
  38. 38.
    Carton D, De Shrijver F, Kint J, et al. Argininosuccinic aciduria. Neonatal variant with rapid fatal course. Acta Paediatr Scand 1969; 58: 528–534.PubMedCrossRefGoogle Scholar
  39. 39.
    Levy HL, Sepe S.1, Shih VE, et al. Sepsis due to Escherichia call in neonates with galactosemia. N Engl J Med 1977; 297: 823–825.PubMedCrossRefGoogle Scholar
  40. 40.
    Retbi JM, Gabilan JC, Marsac C. Acidose lactique et hypoglycémie à début néonatal par déficit congénital en fructose-1–6-diphosphatase hépatique. Arch Fr Pediatr 1975; 32: 367–380.PubMedGoogle Scholar
  41. 41.
    Romero FJ, Ibarra B, Rovira M, et al. Cerebral computed tomography in maple syrup urine disease. J Comput Assist Tomogr 1984; 8: 410–411.PubMedCrossRefGoogle Scholar
  42. 42.
    Hawkins RA, Mans AM. Brain metabolism in encephalopathy caused by hyperammonemia. Adv Exp Med Biol 1994; 368: 11–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Miyabashi S, Ito T, Narisawa K, et al. Biochemical studies in 28 children with lactic acidosis in relation to Leigh’s encephalomyelopathy. Eur J Pediatr 1985; 143: 278–283.CrossRefGoogle Scholar
  44. 44.
    Rashed M, Ozand PT, Al Aqeel A, et al. Experience of King Faisal Specialist Hospital and Research Center with Saudi organic acid disorders. Brain Dev 1994; 16 (suppl): 1–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Chavez-Carballo E. Detection of inherited neurometabolic disorders. Pediatr Neurol 1992; 39: 801–819.Google Scholar
  46. 46.
    Brown GK, Brown RM, Scholem RD, et al. The clinical and biochemical spectrum of human pyruvate dehydrogenase complex deficiency. Ann NY Acad Sci 1989; 573: 360–368.PubMedCrossRefGoogle Scholar
  47. 47.
    Robinson BH, Oei J, Sherwood WG, et al. The molecular basis for the two different clinical presentations of classical pyruvate carboxylase deficiency. Am J Hum Genet 1984; 36: 283–294.PubMedGoogle Scholar
  48. 48.
    Hoppel CL, Kerr DS, Dahms B, et al. Deficiency of the reduced adenine dinucleotide dehydrogenase component of complex I mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest 1987; 80: 71–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Zeviani M, Van Dyke DH, Servidei S, et al. Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency. Arch Neurol 1986; 43: 1198–1202.PubMedCrossRefGoogle Scholar
  50. 50.
    Al Aqeel Rashed M, Ozand PT, et al. 3-Methylglutaconic aciduria: ten cases with a possible new phenotype. Brain Dev 1994; 16 (suppl): 23–32.CrossRefGoogle Scholar
  51. 51.
    Matsuo M, Ookita K, Takemine H, et al. Fatal case of pyruvate dehydrogenase deficiency. Acta Paediatr Scand 1985; 74: 140–142.PubMedCrossRefGoogle Scholar
  52. 52.
    Zeviani M, Nonaka I, Bonilla E, et al. Fatal infantile mitochondrial myopathy and renal dysfunction caused by cytochrome c oxidase deficiency immunological studies in a new patient. Ann Neurol 1985; 17: 414–417.PubMedCrossRefGoogle Scholar
  53. 53.
    Bentlage HA, Wendel U, Schagger H, et al. Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle. Neurology 1986; 47: 243–248.CrossRefGoogle Scholar
  54. 54.
    Sherwood WG, Robinson BH. Dysmorphism in congenital lactic acidosis syndrome. Pediatr Res 1984; 18: 300A.Google Scholar
  55. 55.
    Morris AA, Leonard JV, Brown GK, et al. Deficiency of respiratory chain complex I is a common cause of Leigh disease. Ann Neurol 1996; 40: 25–30.PubMedCrossRefGoogle Scholar
  56. 56.
    Stansbie D, Sherriff RJ. Fructose load test-an in vivo screening test designed to assess pyruvate dehydrogenase activity and interconversion. J Inherited Metab Dis 1978; 1: 163–165.PubMedCrossRefGoogle Scholar
  57. 57.
    Saudubray JM, Marsac C, Cathelineau CL, et al. Neonatal congenital lactic acidosis with pyruvate carboxylase deficiency in two siblings. Acta Paediatr Scand 1976; 65: 717–724.PubMedGoogle Scholar
  58. 58.
    Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest 1990; 86: 1601–1608.PubMedCrossRefGoogle Scholar
  59. 59.
    Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest 1984; 74: 685–697.PubMedCrossRefGoogle Scholar
  60. 60.
    Robinson BH, Sherwood WG. Lactic acidemia, the prevalence of pyruvate decarboxylase deficiency. J Inherited Metab Dis 1986; 7 (suppl 1): 69–73.CrossRefGoogle Scholar
  61. 61.
    Robinson BH: Lactic acidemia (disorders of pyruvate carboxylase, pyruvate dehydrogenase). In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill, 1995: 1479–1500.Google Scholar
  62. 62.
    Brown GK, Haan EA, Kirby DM, et al. “Cerebral” lactic acidosis: defects in pyruvate metabolism with profound brain damage and minimal systemic acidosis. Eur J Pediatr 1988; 147: 10–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Kodama H, Okabe I, Yanagisawa M, et al. Copper deficiency in the mitochondria of cultured skin fibroblasts from patients with Menkes syndrome. J Inherited Metab Dis 1989; 12: 386–389.PubMedCrossRefGoogle Scholar
  64. 64.
    Dahl H-HM, Brown GK, Brown RM, et al. Mutations and polymorphisms in the pyruvate dehydrogenase E,a gene. (Review). Hum Mutat 1992; 1: 97–102.PubMedCrossRefGoogle Scholar
  65. 65.
    Endo H, Hasegawa K, Narisawa K. Defective gene in lactic acidosis: abnormal pyruvate dehydrogenase E1 subunit caused by a frameshift. Am J Hum Genet 1989; 44: 358–364.PubMedGoogle Scholar
  66. 66.
    Robinson BH, MacKay N, Petrova-Benedict R, et al. Defects in the EZ lipoyl transacetylase and X-lipoyl containing component of the pyruvate dehydrogenase complex in patients with lactic acidemia. J Clin Invest 1990; 85: 1821–1824.PubMedCrossRefGoogle Scholar
  67. 67.
    Robinson BH, Oei J, Saudubray JM, et al. The French and North American phenotypes of pyruvate carboxylase deficiency, correlation with biotin containing protein by 3H-biotin incorporation, 35S-streptavidin labeling, and Northern blotting with a cloned cDNA probe. Am J Hum Genet 1987; 40: 50–59.Google Scholar
  68. 68.
    Reed LJ. Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. Curr Top Cell Reg 1981; 18: 95–106.Google Scholar
  69. 69.
    Szabo P, Sheu KF, Robinson RM, et al. The gene for alpha polypeptide of pyruvate dehydrogenase is X-linked in humans. Am J Hum Genet 1990; 46: 874–878.PubMedGoogle Scholar
  70. 70.
    Olson S, Song BJ, Huh TL, et al. Three genes for enzymes of pyruvate dehydrogenase complex map to human chromosomes 3, 7 and X. Am J Hum Genet 1990; 46: 340–349.PubMedGoogle Scholar
  71. 71.
    Robinson BH, Sherwood WG. Pyruvate dehydrogenase phosphatase deficiency: a cause of chronic congenital lactic acidosis in infancy. Pediatr Res 1975; 9: 935–939.PubMedGoogle Scholar
  72. 72.
    Geoffroy V, Fouque F, Benelli C, et al. Defect in the Xlipoyl containing component of the pyruvate dehydrogenase complex in a patient with a neonatal lactic acidemia. Pediatrics 1996; 97: 267–272.PubMedGoogle Scholar
  73. 73.
    Hansen LL, Brown GK, Kirby DM. Characterization of the mutations in three patients with pyruvate dehydrogenase Eia deficiency. J Inherited Metab Dis 1991; 14: 140–151.PubMedCrossRefGoogle Scholar
  74. 74.
    DeMeirleir L, Lissens W, Benelli C, et al. Aberrant splicing of exon 6 in the pyruvate dehydrogenase-E,a mRNA linked to a silent mutation in a large family with Leigh’s encephalomyelopathy. Pediatr Res 1994; 36: 707–712.CrossRefGoogle Scholar
  75. 75.
    Ando T, Rasmussen K, Nyhan WL, et al. Propionic acidemia in patients with ketotic hyperglycinemia. J Pediatr 1971; 78: 827–832.PubMedCrossRefGoogle Scholar
  76. 76.
    Lindblad B, Lindblad BS, Olin P, et al. Methylmalonic acidemia: a disorder associated with acidosis, hyperglycinemia and hyperlactatemia. Acta Paediatr Scand 1968; 57: 417–424.PubMedCrossRefGoogle Scholar
  77. 77.
    Spirer Z, Swirsky-Fein S, Zakut V, et al. Acute neonatal isovaleric acidemia. A report of two cases. Israel J Med Sci 1975; 11: 1005–1010.PubMedGoogle Scholar
  78. 78.
    Koboru JA, Johnston K, Sweetman L. Isolated 3methylcrotonyl CoA carboxylase deficiency presenting as Reye-like syndrome. Pediatr Res 1989; 25: 142A.Google Scholar
  79. 79.
    Roth K, Cohn R, Yandrasitz J, et al. Beta-methylcrotonic aciduria associated with lactic acidosis. J Pediatr 1976; 88: 229–235.PubMedCrossRefGoogle Scholar
  80. 80.
    Sherwood WG, Saunders M, Robinson BH, et al. Lactic acidosis in biotin-responsive multiple carboxylase deficiency caused by holocarboxylase synthetase deficiency of early and late onset. J Pediatr 1982; 101: 546–550.PubMedCrossRefGoogle Scholar
  81. 81.
    Edery P, Gerard B, Chretien D, et al. Liver cytochrome c oxidase deficiency in a case of neonatal-onset hepatic failure. Eur J Pediatr 1994; 153: 190–194.PubMedCrossRefGoogle Scholar
  82. 82.
    Baerlocher K, Gitzelmann R, Nussli R, et al. Infantile lactic acidosis due to hereditary fructose-1,6diphosphatase deficiency. Helv Paediatr Acta 1971; 26: 489–506.PubMedGoogle Scholar
  83. 83.
    Maeska H, Komiya K, Misugi K, et al. Hyperalaninemia, hyperpyruvicemia and lactic acidosis due to pyruvate carboxylase deficiency of the liver; treatment with thiamine and lipoic acid. Eur J Pediatr 1976; 122: 159–168.CrossRefGoogle Scholar
  84. 84.
    Hagenfeldt L, Larsson A, Zetterstrom R. Pyroglutamic aciduria. Studies in an infant with chronic metabolic acidosis. Acta Paediatr Scand 1974; 63: 1–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Wichser J, Kazemi H Ammonia and ventilation: site and mechanism of action. Resp Physiol 1974; 20: 393–406.CrossRefGoogle Scholar
  86. 86.
    Johnston K, Newth CJL, Sheu K-FR, et al. Central hypoventilation syndrome in pyruvate complex deficiency. Pediatrics 1984; 74: 1034–1040.PubMedGoogle Scholar
  87. 87.
    van der Heiden C, Gerards LJ, van Biervliét JPGM, et al. Lethal neonatal argininosuccinate lyase deficiency in four children from same sibship. Helv Paediatr Acta 1976; 31: 407–417.PubMedGoogle Scholar
  88. 88.
    Worthen HG, Al Ashwal A, Ozand PT, et al. Comparative frequency and severity of hypoglycemia in selected organic acidemias, branched-chain amino acidemia, and disorders of fructose metabolism. Brain Dev 1994; 16: (suppl): 81–85.PubMedCrossRefGoogle Scholar
  89. 89.
    Halperin ML, Schiller CM, Fritz IB. The inhibition of methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria: a possible explanation for hypoglycemia in methylmalonic acidemia. J Clin Invest 1971; 50: 2276–2281.PubMedCrossRefGoogle Scholar
  90. 90.
    Stumpf DA, Parker WD, Angelini C. Carnitine deficiency, organic acidemias and Reye syndrome. Neurology 1985; 35: 1041–1045.PubMedCrossRefGoogle Scholar
  91. 91.
    Millington DS, Roe CR, Maltby DA. Application of high resolution fast atom bombardment and constant B/E ratio linked scanning to the identification and analysis of acylcarnitines in metabolic disease. Biomed Mass Spectr 1984; 11: 236–241.CrossRefGoogle Scholar
  92. 92.
    Evangeliou A, Stumpf DA, Parks JC. Citrate synthase inhibition by acyl CoA esters. Ann Neurol 1985; 18: 383–384.Google Scholar
  93. 93.
    Cheema-Dhadli S, Leznoff CC, Halperin M. Effect of 2methylcitrate on citrate metabolism: implications for the management of patients with propionic acidemia and methylmalonic aciduria. Pediatr Res 1975; 9: 905–908.PubMedGoogle Scholar
  94. 94.
    Hillman RE, Sowers LH, Cohen JL. Inhibition of glycine oxidation in cultured fibroblasts by isoleucine. Pediatr Res 1973; 7: 945–947.PubMedCrossRefGoogle Scholar
  95. 95.
    Hillman RE, Otto EF. Inhibition of glycine-serine interconversion in cultured human fibroblasts by products of isoleucine catabolism. Pediatr Res 1974; 8: 941–945.PubMedCrossRefGoogle Scholar
  96. 96.
    Brismar J, Ozand PT. CT and MR of the brain in the diagnosis of organic acidemias. Experiences with 107 patients. Brain Dev 1994; 16 (suppl): 104–124.Google Scholar
  97. 97.
    Stewart PM, Walser M. Failure of normal ureagenic response to amino acids in organic acid loaded rats: A proposed mechanism for the hyperammonemia of propionic and methylmalonic acidemia. J Clin Invest 1980; 66: 484–492.PubMedCrossRefGoogle Scholar
  98. 98.
    Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl CoA of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest 1979; 64: 1544–1551.PubMedCrossRefGoogle Scholar
  99. 99.
    Packman S, Mahoney MJ, Tanaka K, et al. Severe hyperammonemia in a newborn infant with methylmalonyl CoA mutase deficiency. J Pediatr 1978; 92: 769–771.PubMedCrossRefGoogle Scholar
  100. 100.
    Wilson WG, Audenaert SM, Squillaro EJ. Hyperammonemia in a preterm infant with isovaleric acidemia. J Inherited Metab Dis 1984; 7: 71.PubMedCrossRefGoogle Scholar
  101. 101.
    Mendiola J Jr, Robotham JL, Liehr JG, et al. Neonatal lethargy due to isovaleric acidemia and hyperammonemia. Tex Med 1984; 80: 52–54.PubMedGoogle Scholar
  102. 102.
    Cathelineau L, Briand P, Ogier H, et al. Occurrence of hyperammonemia in the course of 17 cases of methylmalonic acidemia. J Pediatr 1981; 99: 279–280.PubMedCrossRefGoogle Scholar
  103. 103.
    Treem WR. Inherited and acquired syndromes of hyperammonemia and encephalopathy in children. (Review). Semin Liver Dis 1994; 14: 236–258.PubMedCrossRefGoogle Scholar
  104. 104.
    Gjedde A, Lockwood AH, Duffy TE, et al. Cerebral blood flow and metabolism in chronically hyperammonemic rats: effect of an acute ammonia challenge. Ann Neurol 1978; 3: 325–330.PubMedCrossRefGoogle Scholar
  105. 105.
    Barzilay Z, Britten AG, Koehler RC, et al. Interaction of CO, and ammonia on cerebral blood flow and Oz consumption in dogs. Am J Physiol 1985;248:H500–H5O7.Google Scholar
  106. 106.
    Chodobski A, Szmydynger-Chodobska J, Urbanska A, et al. Intracranial pressure, cerebral blood flow and cerebrospinal fluid formation during hyperammonemia in cat. J Neurosurg 1986; 65: 86–91.PubMedCrossRefGoogle Scholar
  107. 107.
    Voorhies TM, Ehrlich ME, Duffy TE, et al. Acute hyperammonemia in the young primate: physiologic and neuropathologic correlates. Pediatr Res 1983; 17: 970–975.PubMedCrossRefGoogle Scholar
  108. 108.
    Takahashi H, Koehler RC, Brusilow SW, et al Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261: H825–H829.PubMedGoogle Scholar
  109. 109.
    Takahashi H, Koehler RC, Hirata T, et al. Restoration of cerebrovascular CO2 responsitivity by glutamine synthesis inhibition in hyperammonemic rats. Circ Res 1992; 71: 1220–1230.PubMedCrossRefGoogle Scholar
  110. 110.
    Jessy J, DeJoseph MR, Hawkins RA. Hyperammonemia depresses glucose consumption throughout the brain. Biochem J 1991; 227: 693–696.Google Scholar
  111. 111.
    Hawkins RA, Jessy J. Hyperammonemia does not impair brain function in the absence of net glutamine synthesis. Biochem J 1991; 277: 697–703.PubMedGoogle Scholar
  112. 112.
    Levin B, Abraham JM, Oberholzer VG, et al. Hyperammonemia: a deficiency of liver ornithine transcarbamylase. Occurrence in mother and child. Arch Dis Child 1969; 44: 152–161.PubMedCrossRefGoogle Scholar
  113. 113.
    van der Zee SP, Trijbels JM, Monnens LA, et al. Citrullinemia with rapidly fatal neonatal course. Arch Dis Child 1971; 46: 847–851.CrossRefGoogle Scholar
  114. 114.
    Connelly A, Cross JH, Gadian DG, et al. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 1993; 33: 77–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Divry P, David M, Gregersen N, et al. Dicarboxylic aciduria due to medium chain acyl CoA dehydrogenase defect. A cause of hypoglycemia in childhood. Acta Paediatr Scand 1983; 72: 943–949.PubMedCrossRefGoogle Scholar
  116. 116.
    Stanley CA, Hale DE, Coates PM, et al. Medium-chain acyl-CoA dehydrogenase deficiency in children with nonketotic hypoglycemia and low carnitine levels. Pediatr Res 1983; 17: 877–884.PubMedCrossRefGoogle Scholar
  117. 117.
    Treem WR, Stanley CA, Hale DE, et al. Hypoglycemia, hypotonia, and cardiomyopathy: the evolving picture of long-chain acyl-CoA dehydrogenase deficiency. Pediatrics 1991; 87: 328–333.PubMedGoogle Scholar
  118. 118.
    Poll-The BT, Bonnefont JP, Ogier H, et al. Familial hypoketotic hypoglycemia associated with peripheral neuropathy, pigmented retinopathy and C6–C14 hydroxydicarboxylic aciduria. A new defect in fatty acid oxidation? J Inherited Metab Dis 1988; 11 (suppl 2): 183–185.Google Scholar
  119. 119.
    Stanley CA, Hale DE, Berry GT, et al. Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med 1992; 327: 19–23.PubMedCrossRefGoogle Scholar
  120. 120.
    Niederwieser A, Steinmann B, Exner U, et al. Multiple acyl-CoA dehydrogenation deficiency (MADD) in a boy with nonketotic hypoglycemia, hepatomegaly, muscle hypotonia and cardiomyopathy: Detection of Nisovalerylglutamic acid and its monoamide. Hely Paediatr Acta 1983; 38: 9–26.Google Scholar
  121. 121.
    Leonard JV, Seakins JW, Bartlett K, et al. Inherited disorders of 3-methyl-crotonyl CoA carboxylation. Arch Dis Child 1981; 56: 53–59.PubMedCrossRefGoogle Scholar
  122. 122.
    Labrune P, Bonnefont JP, Nihoul-Fekete CN, et al. Evaluation des méthodes diagnostiques et thérapeutiques de l’hyperinsulinisme du nouvauné et du nourisson. Arch Fr Pediatr 1989; 46: 167–173.PubMedGoogle Scholar
  123. 123.
    Brunelle F, Negre V, Barth MO, et al. Pancreatic venous sampling in infants and children with primary hyperinsulinism. Pediatr Radiol 1989; 19: 100–103.PubMedCrossRefGoogle Scholar
  124. 124.
    Sweetman L. Organic acid analysis. In: Hommes FA, ed. Techniques in diagnostic human biochemical genetics. New York: Wiley-Liss, 1991: 143–176.Google Scholar
  125. 125.
    Hill DW, Walther FH, Wilson TD, et al. High performance liquid chromatographic determination of amino acids in the picomole range. Anal Chem 1979; 51: 1338–1341.PubMedCrossRefGoogle Scholar
  126. 126.
    Nelson K, Hsia DY. Screening for galactosemia and glucose-6-phosphate dehydrogenase deficiency in newborn infants. J Pediatr 1967; 71: 582–585.PubMedCrossRefGoogle Scholar
  127. 127.
    Dahlqvist A. Test paper for galactose in urine. Scand J Clin Lab Invest 1968; 22: 87–93.PubMedCrossRefGoogle Scholar
  128. 128.
    Pagliara AS, Karl IE, Keating JP, et al. Hepatic fructose1,6-diphosphatase deficiency. A cause of lactic acidosis and hypoglycemia in infancy. J Clin Invest 1972; 51: 2115–2123.PubMedCrossRefGoogle Scholar
  129. 129.
    Alexander D, Assaf M, Khudr A, et al. Fructose-1,6diphosphatase deficiency: diagnosis using leukocytes and detection of heterozygotes with radiochemical and spectrophotometric method. J Inherited Metab Dis 1985; 8: 174–177.PubMedCrossRefGoogle Scholar
  130. 130.
    Corbeel L, Eggermont E, Eeckles R, et al. Recurrent ketotic acidosis associated with fructose-1,6diphosphatase deficiency. Acta Paediatr Belg 1976; 29: 29–34.PubMedGoogle Scholar
  131. 131.
    Steinmann B, Gitzelmann R. The diagnosis of hereditary fructose intolerance. Helv Paediatr Acta 1981; 36: 297–316.PubMedGoogle Scholar
  132. 132.
    Baker L, Winegrad AI. Fasting hypoglycaemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity. Lancet 1970; 2: 13–16.PubMedCrossRefGoogle Scholar
  133. 133.
    Steinmann B, Gitzelmann R. Fruktose and sorbitol in infusionsflüssigkeiten sind nicht immer harmlos. Int Zeit Vit Ernahrungforsc 1976; 15 (suppl): 289–294.Google Scholar
  134. 134.
    Farrell DF, Clark AF, Scott CR, et al. Absence of pyruvate decarboxylase activity in man: a cause of congenital lactic acidosis. Science 1975; 187: 1082–1084.PubMedCrossRefGoogle Scholar
  135. 135.
    Haas RH, Thompson J, Morris B, et al. Pyruvate dehydrogenase activity in osmotically-shocked rat brain mitochondria: stimulation by oxaloacetate. J Neurochem 1988; 50: 673–680.PubMedCrossRefGoogle Scholar
  136. 136.
    Sheu KF, Hu CC, Utter MF. Pyruvate dehydrogenase complex activity in normal and deficient fibroblasts. J Clin Invest 1981; 67: 1463–1471.PubMedCrossRefGoogle Scholar
  137. 137.
    Reed LJ, Willms CR. Purification and resolution of the pyruvate dehydrogenase complex (Escherichia coli). Methods Enzymol 1966; 9: 247–265.CrossRefGoogle Scholar
  138. 138.
    DeVivo DC, Haymond MW, Leckie MP, et al. The clinical and biochemical implications of pyruvate carboxylase deficiency. J Clin Endocrinol Metab 1977; 45: 1281–1296.PubMedCrossRefGoogle Scholar
  139. 139.
    Tsuchiyama A, Oyanagi K, Hirano S, et al. A case of pyruvate carboxylase deficiency with late prenatal diagnosis of an unaffected sibling. J Inherited Metab Dis 1983; 6: 85–88.PubMedCrossRefGoogle Scholar
  140. 140.
    Zheng XX, Shoffner JM, Voljavec AS, et al. Evaluation of procedures for assaying oxidative phosphorylation enzyme activities in mitochondrial myopathy muscle biopsies (review). Biochim Biophys Acta 1990; 1019: 110.CrossRefGoogle Scholar
  141. 141.
    Benecke R, Strumper P, Weiss H. Electron transfer complex I defect in idiopathic dystonia. Ann Neurol 1992; 32: 683–686.PubMedCrossRefGoogle Scholar
  142. 142.
    Land JM, Morgan-Hughes JA, Clark JB. Mitochondrial myopathy. Biochemical studies revealing a deficiency of NADH-cytochrome b reductase activity. J Neurol Sci 1981; 50: 1–13.PubMedCrossRefGoogle Scholar
  143. 143.
    Shoffner JM, Wallace DC. Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular basis of inherited disease. New York: McGraw-Hill, 1995: 1535–1609.Google Scholar
  144. 144.
    Webster DR, Simmons HA, Berry DMJ, et al. Pyrimidine and purine metabolites in ornithine transcarbamylase deficiency. J Inherited Metab Dis 1981; 4: 27–31.PubMedCrossRefGoogle Scholar
  145. 145.
    van Gennip AH, van Bree-Blom EJ, Grift J, et al. Urinary purines and pyrimidines in patients with hyperammonemia of various origins. Clin Chim Acta 1980; 104: 227–239.PubMedCrossRefGoogle Scholar
  146. 146.
    Munnich A, Saudubray JM, Taylor J, et al. Congenital lactic acidosis, alpha-ketoglutaric aciduria and variant form maple syrup urine disease due to a single enzyme defect: dihydrolipoyl dehydrogenase deficiency. Acta Paediatr Scand 1982; 71: 167–171.PubMedCrossRefGoogle Scholar
  147. 147.
    Liu TC, Kim H, Arizmendi C, et al. Identification of two missense mutations in a dihydrolipoamide dehydrogenase-deficient patient. Proc Natl Acad Sci USA 1993; 90: 5186–5190.PubMedCrossRefGoogle Scholar
  148. 148.
    Rashed MS, Bucknall MP, Little D, et al. Screening for inborn errors of metabolism by electrospray tandem mass spectrometry and a computer-assisted metabolic profiling algorithm for automated flagging of abnormal profiles. Clin Chem 1997; 43: 1129–1141.PubMedGoogle Scholar
  149. 149.
    Rashed MS, Ozand PT, Bennett MJ, et al. Inborn errors of metabolism diagnosed in sudden infant death cases by acylcarnitine analysis of postmortem bile. Clin Chem 1995; 41: 1109–1114.PubMedGoogle Scholar
  150. 150.
    Rashed MS, Ozand PT, Harrison ME, et al. Electrospray mass spectrometry in the diagnosis of organic acidemias. Rapid Commun Mass Spectrom 1994; 8: 129–133.CrossRefGoogle Scholar
  151. 151.
    Israels S, Haworth JC, Dunn HG, et al. Lactic acidosis in childhood. Adv Pediatr 1976; 22: 267–303.PubMedGoogle Scholar
  152. 152.
    Chalmers RA. Organic acids in urine of patients with congenital lactic acidoses: an aid to differential diagnosis. J Inherited Metab Dis 1984; 7 (suppl): 79–89.PubMedCrossRefGoogle Scholar
  153. 153.
    Fernandes J, Berger R. Urinary excretion of lactate, 2-oxoglutarate, citrate and glycerol in patients with glycogenosis type 1. Pediatr Res 1987; 21: 279–282.PubMedCrossRefGoogle Scholar
  154. 154.
    Yokota I, Indo Y, Coates PM, et al. Molecular basis of medium chain acyl-coenzyme A dehydrogenase deficiency. An A to G transition at position 985 that causes a lysine-304 to glutamate substitution in the mature protein is the single prevalent mutation. J Clin Invest 1990; 86: 1000–1003.PubMedCrossRefGoogle Scholar
  155. 155.
    Tanaka K, Yokota I, Coates PM, et al. Mutations in the medium-chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat 1992; 1: 271–279.PubMedCrossRefGoogle Scholar
  156. 156.
    Matsubara Y, Narisawa K, Miyabayashi S, et al. Identification of a common mutation in patients with medium-chain acyl-CoA dehydrogenase deficiency. Biochem Biophys Res Commun 1990; 171: 498–505.PubMedCrossRefGoogle Scholar
  157. 157.
    Yokota I, Coates PM, Hale DE, et al. Molecular survey of a prevalent mutation, 985A-to-G transition, and identification of five infrequent mutations in the medium-chain acyl-CoA dehydrogenase (MCAD) gene in 55 patients with MCAD deficiency. Am J Hum Genet 1991; 49: 1280–1291.PubMedGoogle Scholar
  158. 158.
    Matsubara Y, Narisawa K, Tada K. Medium-chain acyl-CoA dehydrogenase deficiency: molecular aspects (review). Eur J Pediatr 1992; 151: 154–159.PubMedCrossRefGoogle Scholar
  159. 159.
    Gravel RA, Mahoney MJ, Ruddle FH, et al. Genetic complementation in heterokaryons of human fibroblasts defective in cobalamin metabolism. Proc Natl Acad Sci USA 1975; 72: 3181–3185.PubMedCrossRefGoogle Scholar
  160. 160.
    Willard HF, Mellman IS, Rosenberg LE. Genetic complementation among inherited deficiencies of methylmalonyl CoA mutase activity: evidence for a new class of human cobalamin mutant. Am J Hum Genet 1978; 30: 1–13.PubMedGoogle Scholar
  161. 161.
    Lindblad B, Lindstrand K, Svanberg B, et al. The effect of cobamide coenzyme in methylmalonic acidemia. Acta Paediatr Scand 1969; 58: 178–180.PubMedCrossRefGoogle Scholar
  162. 162.
    Matsui SM, Mahoney MJ, Rosenberg LE. The natural history of the inherited methylmalonic acidemias. N Engl J Med 1983; 308: 857–861.PubMedCrossRefGoogle Scholar
  163. 163.
    Shevell MA, Matiaszuk N, Ledley FD, et al. Varying neurological phenotypes among mut° and mut patients with methylmalonyl CoA mutase deficiency. Am J Med Genet 1993; 45: 619–624.PubMedCrossRefGoogle Scholar
  164. 164.
    Ando T, Rasmussen K, Wright JM, et al. Isolation and identification of methylcitrate, a major metabolic product of propionate in patients with propionic acidemia. J Biol Chem 1972; 247: 2200–2204.PubMedGoogle Scholar
  165. 165.
    Danks DM, Tipett P, Adams C, et al. Cerebro-hepatorenal syndrome of. Zellweger: a report of eight cases with comments on the incidence, the liver lesion, and a fault in pipecolic acid metabolism. J Pediatr 1975; 86: 382–387.PubMedCrossRefGoogle Scholar
  166. 166.
    Northrup H, Sigman ES, Herbert AA. Exfoliative erythroderma resulting from inadequate intake of branched-chain amino acids in infants with maple syrup urine disease. Arch Dermatol 1993; 129: 384–385.PubMedCrossRefGoogle Scholar
  167. 167.
    Batshaw ML, Thomas GH, Brusilow SW. New approaches to the diagnosis and treatment of inborn errors of urea synthesis. Pediatrics 1981; 68: 290–297.PubMedGoogle Scholar
  168. 168.
    Brusilow SW, Batshaw ML. Arginine therapy of argininosuccinase deficiency. Lancet 1979; 1: 124–127.PubMedCrossRefGoogle Scholar
  169. 169.
    Brusilow SW, Valle DL, Batshaw ML. New pathways of nitrogen excretion in inborn errors of urea synthesis. Lancet 1979; 2: 452–454.PubMedCrossRefGoogle Scholar
  170. 170.
    Millington DS, Maltby DA, Roe CR. Rapid detection of argininosuccinic aciduria and citrullinuria by fast atom bombardment and tandem mass spectrometry. Clin Chim Acta 1986; 155: 173–188.PubMedCrossRefGoogle Scholar
  171. 171.
    Levy HL, Shih VE, Madigan PM, et al. Transient tyrosinemia in full-term infants. JAMA 1969; 209: 249–250.PubMedCrossRefGoogle Scholar
  172. 172.
    Fernbach SA, Summons RE, Pereira WE, et al. Metabolic studies of transient tyrosinemia in premature infants. Pediatr Res 1975; 9: 172–176.PubMedCrossRefGoogle Scholar
  173. 173.
    Partington MW, Mathews J. The relation of plasma tyrosine level to weight gain of premature infants. J Pediatr 1966; 68: 749–753.PubMedCrossRefGoogle Scholar
  174. 174.
    Sharp HL, Lindahl JA, Freese DK, et al. A new hepatopancreato-renal disorder resembling tyrosinemia involving neuropathy and abnormal metabolism of polyunsaturated acids. J Pediatr Gastroenterol Nutr 1988; 7: 167–176.PubMedCrossRefGoogle Scholar
  175. 175.
    Sassa S, Fujita H, Kappas A. Succinylacetone and deltaaminolevulinic acid dehydratase in hereditary tyrosinemia; immunochemical study of the enzyme. Pediatrics 1990; 86: 84–86.PubMedGoogle Scholar
  176. 176.
    Strife CF, Zuroweste EL, Emmett EA, et al. Tyrosinemia with acute intermittent porphyria: aminolevulinic acid dehydratase deficiency related to elevated urinary aminolevulinic acid levels. J Pediatr 1977; 90: 400–404.PubMedCrossRefGoogle Scholar
  177. 177.
    Roth KS, Carter BE, Higgins ES. Succinylacetone effects on renal tubular phosphate metabolism: a model for experimental renal Fanconi syndrome. Proc Soc Exp Biol Med 1991; 196: 428–431.PubMedGoogle Scholar
  178. 178.
    Gitzelmann R, Hansen RG. Galactose metabolism, hereditary defects and their clinical significance. In: Burman D, Holton JB, Pennock CA, eds. Baltimore: University Park Press, 1980: 61–101.Google Scholar
  179. 179.
    Richardson RM, Little JA, Patten RL, et al. Pathogenesis of acidosis in hereditary fructose intolerance. Metabolism 1979; 28: 1133–1138.PubMedCrossRefGoogle Scholar
  180. 180.
    Norgaard-Pedersen B. Towards acceptable practices for antenatal and neonatal screening for disease or disease risk. Clin Genet 1994; 46: 152–159.PubMedCrossRefGoogle Scholar
  181. 181.
    Seashore MR. Neonatal screening for inborn errors of metabolism: update (review). Semin Perinatol 1990; 14: 431–438.PubMedGoogle Scholar
  182. 182.
    Lemieux B, Auray-Blais C, Giguere R, et al. Newborn urine screening experience with over one million infants in the Quebec network of genetic medicine. J Inherited Metab Dis 1988; 11: 45–55.PubMedCrossRefGoogle Scholar
  183. 183.
    Grenier A, Morisette J, Dussault JH, et al. Hereditary metabolic diseases in Quebec: blood screening. Union Med Canada 1980; 109: 591–595.Google Scholar
  184. 184.
    Mathias D, Bickel H. Follow-up study of 16 years neonatal screening for inborn errors of metabolism in West Germany. Eur J Pediatr 1986; 145: 310–312.PubMedCrossRefGoogle Scholar
  185. 185.
    Alm J, Larsson A. Evaluation of nation-wide neonatal metabolic screening programme in Sweden 1965–1979. Acta Paediatr Scand 1981; 70: 601–607.PubMedCrossRefGoogle Scholar
  186. 186.
    Bennett AJ. New England regional newborn screening program. N Engl J Med 1977; 197: 1178–1179.CrossRefGoogle Scholar
  187. 187.
    Farriaux JP. Results of screening for phenylketonuria in France. Presse Med 1987; 16: 1072–1074.PubMedGoogle Scholar
  188. 188.
    Dhondt JL, Farriaux JP, Sailly JC. Economic evaluation of cost-benefit ratio of neonatal screening procedure for phenylketonuria and hypothyroidism. J Inherited Metab Dis 1991; 14: 633–639.PubMedCrossRefGoogle Scholar
  189. 189.
    Briard ML. Neonatal screening for phenylketonuria and hypothyroidism in France. A 12 year experience. Ann Biol Clin 1988; 46: 387–392.Google Scholar
  190. 190.
    Misuma H, Wada H, Kawakami M, et al. Galactose and galactose-1-phosphate spot test for galactosemia screening. Clin Chim Acta 1981; 111: 27–32.PubMedCrossRefGoogle Scholar
  191. 191.
    Bowing FG, Brown AR. Development of a protocol for newborn screening for disorders of the galactose metabolic pathway. J Inherited Metab Dis 1986; 9: 99–104.CrossRefGoogle Scholar
  192. 192.
    Wolf B. Worldwide survey of neonatal screening for biotinidase deficiency. J Inherited Metab Dis 1991; 14: 923–927.PubMedCrossRefGoogle Scholar
  193. 193.
    Naylor EW. Newborn screening for maple syrup urine disease. In: Therell BL, ed. Laboratory methods for neonatal screening. Washington DC: American Public Health Association, 1993: 115–124.Google Scholar
  194. 194.
    Wilcken B, Wiley V, Sherry G, et al. Neonatal screening for cystic fibrosis: a comparison of two strategies for case detection in 1.2 million babies. J Pediatr 1995; 127: 965–970.PubMedCrossRefGoogle Scholar
  195. 195.
    Gruters A, Delange F, Giovanelli G, et al. Guidelines for neonatal screening programs for congenital hypothyroidism. European Society for Pediatric Endocrinology Working Group on Congenital Hypothyroidism. Horm Res 1994; 41: 1–2.PubMedGoogle Scholar
  196. 196.
    Kelnar CJ. Congenital adrenal hyperplasia (CAH)-the place for prenatal treatment and neonatal screening. Early Hum Dev 1993; 35: 81–90.PubMedCrossRefGoogle Scholar
  197. 197.
    Kaplan M, Hammerman C, Kvit R, et al. Neonatal screening for glucose-6-phosphate dehydrogenase deficiency: sex distribution. Arch Dis Child 1994; 71: F59–60.CrossRefGoogle Scholar
  198. 198.
    Rosenberg T, Jacobs HK, Thompson R, et al. Cost-effectiveness of neonatal screening for Duchenne muscular dystrophy-how does this compare to existing neonatal screening for metabolic disorders. Soc Sci Med 1993; 37: 541–547.PubMedCrossRefGoogle Scholar
  199. 199.
    Jakobs C, van den Heuvel CM, Stellaard F, et al. Diagnosis of Zellweger syndrome by analysis of very long-chain fatty acids in stored blood spots collected at neonatal screening. J Inherited Metab Dis 1993; 16: 63–66.PubMedCrossRefGoogle Scholar
  200. 200.
    Henderson SJ, Fishlock K, Horn ME, et al. Neonatal screening for hemoglobin variants using filter-paper dried blood specimens. Clin Lab Hematol 1991; 13: 327–334.CrossRefGoogle Scholar
  201. 201.
    Wilcken DE, Blades BL, Dudman NP. A neonatal screening approach to the detection of familial hypercholesterolaemia and family-based coronary prevention (review). J Inherited Metab Dis 1988; 11 (suppl): 87–90.PubMedCrossRefGoogle Scholar
  202. 202.
    Woods WG, Lemieux B, Leclerc JM, et al. Screening for neuroblastoma (NB) in North America: the Quebec project. Prog Clin Biol Res 1994; 385: 377–382.PubMedGoogle Scholar
  203. 203.
    Coulombe JT, Shih VE, Levy HL. Massachusetts metabolic disorders screening program. II. Methylmalonic aciduria. Pediatrics 1981; 67: 26–31.PubMedGoogle Scholar
  204. 204.
    Millington DS, Kodo N, Norwood DL, et al. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherited Metab Dis 1990; 13: 321–324.PubMedCrossRefGoogle Scholar
  205. 205.
    Naylor E. Disorders detected by the expanded supplemental newborn screening program at Neo Gen Screening Inc. Third International Meeting of the Society for Neonatal Screening, Boston, MA, October 21–24, 1996.Google Scholar
  206. 206.
    Ozand PT, Rashed MS. Tandem mass spectrometry with computer-assisted metabolic profiling in screening for inborn errors of metabolism. Fourth Asian-European Workshop on Inborn Errors of Metabolism, Munich, Germany, August 25-September 1, 1996.Google Scholar
  207. 207.
    Ozand PT, Rashed MS. Results of neonatal and selective screening in Saudi Arabia during a period of nine months; new experience gained. Fourth Asian-European Workshop on Inborn Errors of Metabolism, Munich, Germany, August 25-September 1, 1996.Google Scholar
  208. 208.
    Barns RJ, Bowling FG, Brown G, et al. Carnitine in dried blood spots: a method suitable for neonatal screening. Clin Chim Acta 1991; 197: 27–33.PubMedCrossRefGoogle Scholar
  209. 209.
    Ziadeh R, Hoffman EP, Finegold DN, et al. Medium-chain acyl-CoA dehydrogenase deficiency in Pennsylvania: neonatal screening shows high incidence and unexpected mutation frequencies. Pediatr Res 1995; 37: 675–678.PubMedCrossRefGoogle Scholar
  210. 210.
    Lehnert W. Long-term results of selective screening for inborn errors of metabolism. Eur J Pediatr 1994; 153 (suppl 1): S9–13.PubMedCrossRefGoogle Scholar
  211. 211.
    Duran M, Dorland L, De Bree PK, et al. Selective screening for amino acid disorders. Eur J Pediatr 1994; 153 (suppl 1): S33–37.PubMedCrossRefGoogle Scholar
  212. 212.
    Duran M, Dorland L, Wadman SIC, et al. Group tests for selective screening of inborn errors of metabolism. Eur J Pediatr 1994; 153 (suppl 1): 527–32.Google Scholar
  213. 213.
    Hoffman GF. Selective screening for inborn errors of metabolism-past, present, and future (review). Eur J Pediatr 1994; 153 (suppl 1): 52–8.CrossRefGoogle Scholar
  214. 214.
    Stacpoole PW. Lactic acidosis: the case against bicarbonate therapy. Ann Intern Med 1986; 105: 276–279.PubMedGoogle Scholar
  215. 215.
    Bartlett K, Ghneim HK, Stirk JH, et al. Pyruvate carboxylase deficiency. J Inherited Metab Dis 1984; 7 (suppl 1): 74–78.PubMedCrossRefGoogle Scholar
  216. 216.
    Oizumi J, Shaw KN, Giudici TA, et al. Neonatal pyruvate carboxylase deficiency with renal tubular acidosis and cystinuria. J Inherited Metab Dis 1983; 6: 89–94.PubMedCrossRefGoogle Scholar
  217. 217.
    Sagy M, Barzilay Z, Barash V, et al. Congenital lactic acidosis associated with pyruvate carboxylase deficiency. Isr J Med Sci 1981; 17: 1159–1163.PubMedGoogle Scholar
  218. 218.
    Haworth JC, Robinson BH, Perry TL. Lactic acidosis due to pyruvate carboxylase deficiency. J Inherited Metab Dis 1981; 4: 57–58.PubMedCrossRefGoogle Scholar
  219. 219.
    Murphy JV, Isohashi F, Weinberg MB, et al. Pyruvate carboxylase deficiency: an alleged biochemical cause of Leigh’s disease. Pediatrics 1981; 68: 401–404.PubMedGoogle Scholar
  220. 220.
    Corr PB, Creer MH, Yamada KA, et al. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 1989; 83: 927–936.PubMedCrossRefGoogle Scholar
  221. 221.
    Hug G, Bove KE, Soukup S. Lethal multiorgan deficiency of carnitine palmitoyl-transferase II. N Engl J Med 1991; 325: 1862–1864.PubMedCrossRefGoogle Scholar
  222. 222.
    Tein I, DeVivo DC, Bierman F, et al. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy (review). Pediatr Res 1990; 28: 247–255.PubMedCrossRefGoogle Scholar
  223. 223.
    Thompson GN, Chalmers RA. Increased urinary metabolite excretion during fasting in disorders of propionate metabolism. Pediatr Res 1990; 27: 413–416.PubMedCrossRefGoogle Scholar
  224. 224.
    Saudubray JM, Ogier H, Charpentier C, et al. Neonatal management of organic acidurias. Clinical update. J Inherited Metab Dis 1984; 7 (suppl 1): 2–9.PubMedCrossRefGoogle Scholar
  225. 225.
    Kalloghlian A, Gleispach H, Ozand PT. A patient with propionic acidemia managed with continuous insulin infusion and total parenteral nutrition. J Child Neurol 1992; 7 (suppl): S88–91.PubMedCrossRefGoogle Scholar
  226. 226.
    Thompson GN, Chalmers RA, Walter JH, et al. The use of metronidazole in the management of methylmalonic and propionic acidemias. Eur J Pediatr 1990; 149: 792–796.PubMedCrossRefGoogle Scholar
  227. 227.
    Roe CR, Bohan TP. L-carnitine therapy in propionic acidemia. Lancet 1982; 1: 1411–1412.PubMedCrossRefGoogle Scholar
  228. 228.
    Roe CR, Hoppel CL, Stacey TE, et al. Metabolic response to carnitine in methylmalonic aciduria. An effective strategy for elimination of propionyl groups. Arch Dis Child 1983; 58: 916–920.PubMedCrossRefGoogle Scholar
  229. 229.
    Wolff JA, Carroll JE, Le Phuc Thuy, et al. Carnitine reduces fasting ketogenesis in patients with disorders of propionate metabolism. Lancet 1986; 1: 289–291.PubMedCrossRefGoogle Scholar
  230. 230.
    van der Meer SB, Poggi F, Spada M, et al. Clinical outcome of long-term management of patients with vitamin B12-unresponsive methylmalonic acidemia. J Pediatr 1994; 125: 903–908.PubMedCrossRefGoogle Scholar
  231. 231.
    Goda S, Hamada T, Ishimoto S, et al. Clinical improvement after administration of coenzyme Q10 in a patient with mitochondrial encephalomyopathy. J Neurol 1987; 234: 62–63.PubMedCrossRefGoogle Scholar
  232. 232.
    Bresolin N, Bet L, Binda A, et al. Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10. Neurology 1988; 38: 892–899.PubMedCrossRefGoogle Scholar
  233. 233.
    Stacpoole PW, Harman EM, Curry SH, et al. Treatment of lactic acidosis with dichloroacetate. N Engl J Med 1983; 309: 390–396.PubMedCrossRefGoogle Scholar
  234. 234.
    Stacpoole PW, Lorenz AC, Thomas RG, et al. Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 1988; 108: 58–63.PubMedGoogle Scholar
  235. 235.
    Donn SM, Swartz RD, Thoene JG. Comparison of exchange transfusion, peritoneal dialysis and hemodialysis for the treatment of hyperammonemia in an anuric newborn infant. J Pediatr 1979; 95: 67–70.PubMedCrossRefGoogle Scholar
  236. 236.
    Wiegand C, Thompson T, Bock GH, et al. The management of life-threatening hyperammonemia: a comparison of several therapeutic modalities. J Pediatr 1980; 96: 142–144.PubMedCrossRefGoogle Scholar
  237. 237.
    Brusilow W, Tinker J, Batshaw ML. Amino acid acylation: a mechanism of nitrogen excretion in inborn errors of urea synthesis. Science 1980; 207: 659–661.PubMedCrossRefGoogle Scholar
  238. 238.
    James MO, Smith RL, Williams RT, et al. The conjugation of phenylacetic acid in man, sub-human primates and some non-primate species. Proc R Soc Lond [B] 1972; 182: 25–35.CrossRefGoogle Scholar
  239. 239.
    Brusilow SW. Phenylacetylglutamine may replace urea as a vehicle for waste nitrogen excretion. Pediatr Res 1991; 29: 147–150.PubMedCrossRefGoogle Scholar
  240. 240.
    Rating D, Hanefeld F, Siemes H, et al. 4-Hydroxybutyric aciduria: a new inborn error of metab olism. I. Clinical review. J Inherited Metab Dis 1984; 7 (suppl 1): 90–92.PubMedCrossRefGoogle Scholar
  241. 241.
    Brown GK, Cromby CH, Manning NJ, et al. Urinary organic acids in succinic semialdehyde dehydrogenase deficiency: evidence of alpha-oxidation of 4-hydroxy-butyric acid, interaction of succinic semialdehyde with pyruvate dehydrogenase and possible secondary inhibition of mitochondrial beta-oxidation. J Inherited Metab Dis 1987; 10: 367–375.PubMedCrossRefGoogle Scholar
  242. 242.
    Jakobs C, Michael T, Jaeger E, et al. Further evaluation of vigabatrin therapy in 4-hydroxybutyric aciduria. Eur J Pediatr 1992; 151: 466.PubMedCrossRefGoogle Scholar
  243. 243.
    Gibson KM, DeVivo DC, Jakobs C. Vigabatrin therapy in patient with succinic semialdehyde dehydrogenase deficiency. Lancet 1989; 2: 1105–1106.PubMedCrossRefGoogle Scholar
  244. 244.
    Snead OC. Gamma hydroxybutyrate. Life Sci 1977; 20: 1935–1944.PubMedCrossRefGoogle Scholar
  245. 245.
    Langan TJ, Pueschel SM. Nonketotic hyperglycinemia: clinical, biochemical, and therapeutic considerations (review). Cur Probl Pediatr 1983; 13: 1–30.Google Scholar
  246. 246.
    Dobyns WB. Agenesis of corpus callosum and gyral malformations are frequent manifestations of nonketotic hyperglycinemia. Neurology 1989; 39: 817–820.PubMedCrossRefGoogle Scholar
  247. 247.
    Von Wendt L, Similä S, Saukkonen A-L, et al. Prenatal brain damage in nonketotic hyperglycinemia. Am J Dis Child 1981; 135: 1072.Google Scholar
  248. 248.
    Perry TL, Urquhart N, Maclean J, et al. Nonketotic hyperglycinemia. Glycine accumulation due to absence of glycine cleavage in brain. N Engl J Med 1975; 292: 1269–1273.PubMedCrossRefGoogle Scholar
  249. 249.
    Wollf JA, Kulovich S, Yu AL, et al. The effectiveness of benzoate in the management of seizures in nonketotic hyperglycinemia. Am J Dis Child 1986; 140: 596–602.Google Scholar
  250. 250.
    Schmitt B, Steinmann B, Gitzelmann R, et al. Nonketotic hyperglycinemia: clinical and electrophysiologic effects of dextromethorphan, an antagonist of the NMDA receptor. Neurology 1993; 43: 421–424.PubMedCrossRefGoogle Scholar
  251. 251.
    Hamosh A, McDonald JW, Valle D, et al. Dextromethorphan and high-dose benzoate therapy for nonketotic hyperglycinemia in an infant. J Pediatr 1992; 121: 131–135.PubMedCrossRefGoogle Scholar
  252. 252.
    Scriver CR, White A, Sprague W, et al. Plasma-CSF glycine ratios in normal and nonketotic hyperglycinemia subjects. N Engl J Med 1975; 293: 778.PubMedGoogle Scholar
  253. 253.
    Brandt NJ, Rasmussen K, Brandt S, et al. D-glyceric acidemia, and non-ketotic hyperglycinaemia. Clinical and biochemical findings in a new syndrome. Acta Paediatr Scand 1976; 65: 17–22.PubMedCrossRefGoogle Scholar
  254. 254.
    Nishimura M, Yoshino K, Tomita Y, et al. Central and peripheral nervous system pathology of homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. Ped Neurol 1985; 1: 375–378.CrossRefGoogle Scholar
  255. 255.
    Harpey JP, Rosenblatt DS, Cooper BA, et al. Homocystinuria caused by 5,10-methylenetetrahydrofolate reductase deficiency. A case in an infant responding to methionine, folinic acid, and pyridoxine and vitamin B12 therapy. J Pediatr 1981; 98: 275–278.PubMedCrossRefGoogle Scholar
  256. 256.
    Wendel U, Bremer HJ. Betaine in the treatment of homocystinuria due to 5,10-methylene THE reductase deficiency. Eur J Pediatr 1984; 142: 147–150.PubMedCrossRefGoogle Scholar
  257. 257.
    Watkins D, Rosenblatt DS. Functional methionine synthase deficiency (cblE and cb1G): clinical and biochemical heterogeneity (review). J Med Genet 1989; 34: 427–434.CrossRefGoogle Scholar
  258. 258.
    Danks DM, Campbell PE, Stevens BJ, et al. Menkes’ kinky hair syndrome: an inherited defect in copper absorption with widespread effects. Pediatrics 1972; 50: 188–201.PubMedGoogle Scholar
  259. 259.
    Aukett A, Bennett MJ, Hosking GP. Molybdenum cofactor deficiency: an easily missed inborn error of metabolism. Dev Med Child Neurol 1988; 30: 531–535.PubMedCrossRefGoogle Scholar
  260. 260.
    Brown GK, Scholem RD, Croll HB, et al. Sulfite oxidase deficiency: clinical, neuroradiologic, and biochemical features in two new patients. Neurology 1989; 39: 252–257.PubMedCrossRefGoogle Scholar
  261. 261.
    Shih VE, Abroms IF, Johnson JL, et al. Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N Engl J Med 1977; 297: 1022–1028.PubMedCrossRefGoogle Scholar
  262. 262.
    Sherwood G, Sarkar B, Sass Kortsak A. Copper histidinate therapy in Menkes’ disease. Prevention of progressive neurodegeneration. J Inherited Metab Dis 1989; 12 (suppl 2): 393–396.PubMedCrossRefGoogle Scholar
  263. 263.
    Wilson GN, Holmes RG, Custer J, et al. Zellweger syndrome: diagnostic assays, syndrome delineation, and potential therapy. Am J Med Genet 1986; 24: 69–82.PubMedCrossRefGoogle Scholar
  264. 264.
    Aubourg P, Scotto J, Rocchiccioli F, et al. Neonatal adrenoleukodystrophy. J Neurol Neurosurg Psychiatry 1986; 49: 77–86.PubMedCrossRefGoogle Scholar
  265. 265.
    Heymans HS, Oorthuys JW, Nelck G, et al. Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N Engl J Med 1985; 313: 187–188.PubMedGoogle Scholar
  266. 266.
    Spranger JW, Opitz JM, Bidder U. Heterogeneity of chondrodysplasia punctata. Humangenetik 1971; 11: 190–212.PubMedCrossRefGoogle Scholar
  267. 267.
    Happle R. X-linked dominant chondrodysplasia punctata. Review of literature and report of a case. Hum Genet 1979; 53: 65–73.PubMedCrossRefGoogle Scholar
  268. 268.
    Curry CJ, Magenis RE, Brown M, et al. Inherited chondrodysplasia punctata due to a deletion of the terminal short arm of an X-chromosome. N Engl J Med 1984; 311: 1010–1015.PubMedCrossRefGoogle Scholar
  269. 269.
    Lazarow PH, Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol 1985; 1: 489–530.PubMedCrossRefGoogle Scholar
  270. 270.
    Lazarow PB, Robbi M, Fujiki Y, et al. Biogenesis of peroxisomal proteins in vivo and in vitro. Ann NY Acad Sci 1982; 386: 285–300.PubMedCrossRefGoogle Scholar
  271. 271.
    Yajima S, Suzuki T, Shimozawa N, et al. Complementation study of peroxisome-deficient disorders by immunofluorescence staining and characterization of fused cells. Hum Genet 1992; 88: 491–499.PubMedCrossRefGoogle Scholar
  272. 272.
    Shimozawa N, Tsukamoto T, Suzuki Y, et al. A human gene responsible for Zellweger syndrome that affects peroxisomal assembly. Science 1992; 255: 1132–1134.PubMedCrossRefGoogle Scholar
  273. 273.
    Gartner J, Moser H, Valle D. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nature Genet 1992; 1: 16–23.PubMedCrossRefGoogle Scholar
  274. 274.
    Santos MJ, Imanaka T, Shio H, et al. Peroxisomal membrane ghosts in Zellweger syndrome-aberrant organelle assembly. Science 1988; 239: 1536–1538.PubMedCrossRefGoogle Scholar
  275. 275.
    Goldfischer S, Collins J, Rapin I, et al. Peroxisomal defects in the neonatal onset and X-linked adrenoleukodystrophy. Science 1985; 227: 67–70.PubMedCrossRefGoogle Scholar
  276. 276.
    Suzuki Y, Orii T, Mori M, et al. Deficient activities and proteins of peroxisomal ß-oxidation enzymes in infants with Zellweger syndrome. Clin Chim Acta 1986; 156: 191–196.PubMedCrossRefGoogle Scholar
  277. 277.
    Evrard P, Caviness VS Jr., Prats-Vinas J, et al. The mechanism of arrest of neuronal migration in the Zellweger malformation: an hypothesis bases upon cytoarchitectonic analysis. Acta Neuropathol (Berl) 1978; 41: 109–117.CrossRefGoogle Scholar
  278. 278.
    Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney, and retina of patients with peroxisomal disorders. Brain Res 1992; 583: 171–182.PubMedCrossRefGoogle Scholar
  279. 279.
    Martinez M. Severe deficiency of docosahexaenoic acid in peroxisomal disorders. A defect of delta-4 desaturations ? Neurology 1990; 40: 1292–1298.PubMedCrossRefGoogle Scholar
  280. 280.
    Wanders RJ, Romeyn GJ, van Roermund CWT, et al. Identification of L-pipecolate oxidase in human liver and its deficiency in the Zellweger syndrome. Biochem Biophys Res Commun 1988; 154: 33–38.PubMedCrossRefGoogle Scholar
  281. 281.
    Hanson RF, Szczepanick-vanLeeuwen P, Williams GC, et al. Defects of bile acid synthesis in Zellweger’s syndrome. Science 1979; 203: 1107–1108.PubMedCrossRefGoogle Scholar
  282. 282.
    Rocchiccioli F, Aubourg P, Bougneres PF. Medium-and long-chain dicarboxylic aciduria in patients with Zellweger syndrome and neonatal adrenoleukodystrophy. Pediatr Res 1986; 20: 62–66.PubMedCrossRefGoogle Scholar
  283. 283.
    Hoefler G, Hoefler S, Watkins PA, et al. Biochemical abnormalities in rhizomelic chondrodysplasia punctata. J Pediatr 1988; 112: 726–733.PubMedCrossRefGoogle Scholar
  284. 284.
    Goodman SI, Frerman FE. Glutaric acidemia type II (multiple acyl-CoA dehydrogenation deficiency). J Inherited Metab Dis 1984; 7 (suppl 1): 33–37.PubMedCrossRefGoogle Scholar
  285. 285.
    Loehr JP, Goodman SI, Frerman FE. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res 1990; 27: 311–315.PubMedCrossRefGoogle Scholar
  286. 286.
    Harpey JP, Charpentier C, Goodman SI, et al. Multiple acyl-CoA dehydrogenase deficiency occurring in pregnancy and caused by a defect in riboflavin metabolism in the mother. Study of a kindred with seven deaths in infancy. Value of riboflavin therapy in preventing this syndrome. J Pediatr 1983; 103: 394–398.PubMedCrossRefGoogle Scholar
  287. 287.
    Hoffman G, Gibson KM, Brandt IK, et al. Mevalonic aciduria-an inborn error of cholesterol and nonsterol isoprene biosynthesis. N Engl J Med 1986; 314: 1610–1614.CrossRefGoogle Scholar
  288. 288.
    Jaeken J, Stibler H, Hagberg B. The carbohydrate-deficient glycoprotein syndrome: a new inherited multisystemic disease with severe nervous system involvement. Acta Paediatr Scand 1991;suppl 375: 1–71.Google Scholar
  289. 289.
    Weaver DD, Graham CB, Thomas IT, et al. A new overgrowth syndrome with accelerated skeletal maturation, unusual face and camptodactyly. J Pediatr 1974; 84: 547–552.PubMedCrossRefGoogle Scholar
  290. 290.
    Jaeken J, van Eijk HG, van der Heul C, et al. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Clim Acta 1984; 144: 245–247.CrossRefGoogle Scholar
  291. 291.
    Vanier MT, Rodriguez-Lafrasse C, Rousson R, et al. Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta 1991; 1096: 328–337.PubMedCrossRefGoogle Scholar
  292. 292.
    Manning DJ, Price WI, Pearse RG. Fetal ascites: an unusual presentation of Niemann-Pick disease type C. Arch Dis Child 1990; 65: 335–336.PubMedCrossRefGoogle Scholar
  293. 293.
    Rutledge JC. Progressive neonatal liver failure due to type C Niemann-Pick disease. Pediatr Pathol 1989; 9: 779–784.PubMedCrossRefGoogle Scholar
  294. 294.
    Pin I, Pradines S, Pincemaille O, et al. Forme respiratoire mortelle de maladie de Niemann-Pick Type C. Arch Fr Pediatr 1990; 47: 373–375.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Pinar T. Ozand

There are no affiliations available

Personalised recommendations