Skip to main content

Abstract

Development of the embryo, fetus, and neonate requires appropriate respiratory exchange of oxygen and carbon dioxide. During intrauterine life, the placenta serves as the lung for the fetus, permitting respiratory gas exchange and regulating acid-base balance. In this and many other ways, the placenta fulfills the functions of a variety of organs essential to extrauterine existence. With birth, physiologically one of the most tumultuous events of life, the responsibility for respiratory function shifts from the placenta to the neonatal lung, which must change within a matter of seconds from a relatively passive structure with fluid-filled airways to an active member with relatively full functional capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meschia G. Supply the oxygen to the fetus. J Reprod Med 1979; 23: 160–165.

    PubMed  CAS  Google Scholar 

  2. Wilkening RB, Meschia G. Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. Am J Physiol 1983; 244: 749–755.

    Google Scholar 

  3. Dawes GS. Foetal and neonatal physiology. A comparative study of the changes at birth. Chicago: Year Book, 1968: 185.

    Google Scholar 

  4. Strauss L, Goldenberg N, Hirota K, et al. Structure of the human placenta: with observations on ultrastructure of the terminal chorionic villus. Birth Defects Original Article Series 1965; 1: 13–26.

    Google Scholar 

  5. Metcalfe J, Bartels H, Moll W. Gas exchange in pregnant uterus. Physiol Rev 1967; 47: 782–838.

    PubMed  CAS  Google Scholar 

  6. Bartels H, Moll W. Passage of inert substances and oxygen in the human placenta. Pflugers Arch 1964; 280: 165–177.

    Article  CAS  Google Scholar 

  7. Nelson NM. Respiration and circulation before birth. In: Smith CA, Nelson NM, eds. The physiology of the newborn infant. Springfield, IL: Charles C. Thomas, 1976: 15–116.

    Google Scholar 

  8. Meschia G. Physiology of transplacental diffusion. Obstet Gynecol Ann 1976; 5: 21–38.

    CAS  Google Scholar 

  9. Wilkening RB, Meschia G. Comparative physiology of placental oxygen transport. Placenta 1992; 13: 1–15.

    Article  PubMed  CAS  Google Scholar 

  10. Wallenburg HCS, van Kreel BK. Placental and non-placental drainage of the uterus in the pregnant rhesus monkey. Eur J Obstet Gynecol Reprod Biol 1977; 7: 79–84.

    Article  PubMed  CAS  Google Scholar 

  11. Pardi G, Cetin I, Marconi Am, et al. Venous drainage of the human uterus: respiratory gas studies in normal and fetal growth retarded pregnancies. Am J Obstet Gynecol 1992; 166: 699–706.

    PubMed  CAS  Google Scholar 

  12. Longo LD, Hill EP, Power, GG. Theoretical analysis of factors effecting placental 02 transfer. Am J Physiol 1972; 222: 730–739.

    PubMed  CAS  Google Scholar 

  13. Longo LD. Respiratory gas exchange in the placenta. In: Fishman AP, Farhi LE, Tenney SM, eds. Handbook of physiology, sec. 3. The respiratory system, vol. IV. Gas exchange. Washington, DC: American Physiological Society, 1987: 351–401.

    Google Scholar 

  14. Harding R, Sigger JN, Wickham PJD. Fetal and maternal influences on arterial oxygen levels in sheep fetus. J Dev Physiol 1983; 5: 267–276.

    PubMed  CAS  Google Scholar 

  15. Aherne W, Dunnill MS. Quantitative aspects of placental structure. J Pathol Bacteriol 1966; 91: 123–139.

    Article  PubMed  CAS  Google Scholar 

  16. Clavero JA, Botella Llusia J. Measurement of the villus surface in normal and pathologic placentas. Am J Obstet Gynecol 1963; 86: 234–240.

    PubMed  CAS  Google Scholar 

  17. Blickstein I, Ron A. Can placental surface area and neonatal weight be predicted from placental surface measurements? Gynecol Obstet Invest 1995; 40: 253–256.

    Article  PubMed  CAS  Google Scholar 

  18. Scheffen I, Kaufmann P, Phillippens L, et al. Alterations of the fetal capillary bed in the guinea pig placenta following long-term hypoxia. In: Piiper J, ed. Oxygen transport to tissue, vol. 12. New York: Plenum Press, 1990: 779–790.

    Google Scholar 

  19. Naeye RL. Effects of maternal cigarette smoking on the fetus and placenta. Br J Obstet Gynaecol 1978; 85: 732–737.

    Article  PubMed  CAS  Google Scholar 

  20. Salafia CM, Pezzullo JC, Lopez-Zeno JA, et al. Placental pathologic features of preterm preeclampsia. Am J Obstet Gynecol 1995; 173: 1097–1105.

    Article  PubMed  CAS  Google Scholar 

  21. Stevens-Simon C, Metlay LA, McAnarney ER. Maternal prepregnant weight and weight gain: relationship to placental microstructure and morphometric oxygen diffusion capacity. Am J Perinatol 1995; 12: 407–412.

    Article  PubMed  CAS  Google Scholar 

  22. Bjork O, Persson B. Villous structure in different parts of the cotyledon in placentas of insulin-dependent diabetic women: a morphometric study. Acta Obstet Gynecol Scand 1984; 63: 37–43.

    Article  PubMed  Google Scholar 

  23. Stoz F, Schuhmann RA, Schultz R. Morphohistometric investigations of placentas of diabetic patients in correlation to the metabolic adjustment of the disease. J Perinat Med 1988; 16: 211–216.

    Article  PubMed  CAS  Google Scholar 

  24. Stoz F, Schuhmann RA, Haas B. Morphohistometric investigations in placentas of gestational diabetes. J Perinat Med 1988; 16: 205–209.

    Article  PubMed  CAS  Google Scholar 

  25. Salafia CM, Minior VK, Lopez-Zeno JA, et al. Relationship between placental histologic features and umbilical cord blood gases in preterm gestations. Am J Obstet Gynecol 1995; 173: 1058–1064.

    Article  PubMed  CAS  Google Scholar 

  26. Fox J. Pathology of the placenta in maternal diabetes mellitus. Obstet Gynecol 1969; 34: 792–798.

    PubMed  CAS  Google Scholar 

  27. Okudaira Y, Hirota K, Cohen S, et al. Ultrastructure of the human placenta in maternal diabetes mellitus. Lab Invest 1966; 15: 910–926.

    PubMed  CAS  Google Scholar 

  28. Mayhew TM, Sorensen FB, Klebe JG, et al. Oxygen diffusive conductance in placentae from control and diabetic women. Diabetologia 1993; 36: 955–960.

    Article  PubMed  CAS  Google Scholar 

  29. Longo LD, Power GG, Forster RE II. Respiratory function of the placenta as determined with carbon monoxide in sheep and dogs. J Clin Invest 1967; 46: 812–828.

    Article  PubMed  CAS  Google Scholar 

  30. Mayhew TM, Joy CF, Haas JD. Structure-function correlation in the human placenta: the morphometric diffusing capacity for oxygen at full term. J Anat 1984; 139: 691–708.

    PubMed  Google Scholar 

  31. Mayhew TM, Jackson MR, Haas JD. Microscopical morphology of the human placenta and its effects on oxygen diffusion: a morphometric model. Placenta 1986; 7: 121–131.

    Article  PubMed  CAS  Google Scholar 

  32. Longo LD, Power GG, Forster RE II. Placental diffusing capacity for carbon monoxide at varying partial pressures of oxygen. J Appl Physiol 1969; 26: 360–370.

    PubMed  CAS  Google Scholar 

  33. Jauniaux E, Burton GJ. The effect of smoking in pregnancy on early placental morphology. Obstet Gynecol 1992; 79: 645–648.

    PubMed  CAS  Google Scholar 

  34. Mayhew TM. Scaling placental oxygen diffusion to birth weight: studies on placentae from low- and high-altitude pregnancies. J Anat 1991; 175: 187–194.

    PubMed  CAS  Google Scholar 

  35. Mayhew TM, Jackson MR, Haas JD. Oxygen diffusive conductances of human placentae from term pregnancies at low and high altitudes. Placenta 1990; 11: 493–503.

    Article  PubMed  CAS  Google Scholar 

  36. Meschia G, Battaglia FC, Hay WW Jr, et al. Utilization of substrates by the bovine placenta in vivo. Fed Proc 1980; 39: 245–249.

    PubMed  CAS  Google Scholar 

  37. Longo LD, Power GG. Analysis of PO2 and PCO2 differences between maternal and fetal blood in the placenta. J Appl Physiol 1969; 26: 48–55.

    PubMed  CAS  Google Scholar 

  38. Power GG, Longo LD, Wagner HN Jr, et al. Uneven distribution of maternal and fetal placental blood flow, as demonstrated using macroaggregates, and its response to hypoxia. J Clin Invest 1967; 46: 2053–2063.

    Article  PubMed  CAS  Google Scholar 

  39. Power GG, Hill EP, Longo LD. Analysis of uneven distribution of diffusing capacity and blood flow in the placenta. Am J Physiol 1972; 222: 740–746.

    PubMed  CAS  Google Scholar 

  40. Bissonnette JM, Longo LD, Novy M.1, et al. Placental diffusing capacity and its relation to fetal growth. J Dey Physiol 1979; 1: 351–359.

    CAS  Google Scholar 

  41. Bissonnette JM, Wickham WK. Placental diffusing capacity for carbon monoxide in unanesthetized guinea pigs. Respir Physiol 1977; 31: 161–168.

    Article  PubMed  CAS  Google Scholar 

  42. Gilbert RD, Cummings LA, Jachau MR, et al. Placental diffusing capacity and fetal development in exercising or hypoxic guinea pigs. J Appl Physiol 1979; 46: 828–834.

    PubMed  CAS  Google Scholar 

  43. Longo LD, Ching K. Placental diffusing capacity for carbon monoxide and oxygen in unanesthetized sheep. J Appl Physiol 1977; 43: 885–893.

    PubMed  CAS  Google Scholar 

  44. Bacon BJ, Gilbert RD, Kaufmann P, et al. Placental anatomy and diffusing capacity in guinea pigs following long-term maternal hypoxia. Placenta 1984; 5: 465–488.

    Article  Google Scholar 

  45. Nelson PS, Gilbert RD, Longo LD. Fetal growth and placental diffusing capacity in guinea pigs following long-term maternal exercise. J Dey Physiol 1983; 5: 1–10.

    Google Scholar 

  46. Smith AD, Gilbert RD, Lammers RJ, et al. Placental exchange area in pigs following long-term maternal exercise: a stereological analysis. J Dev Physiol 1983; 5: 11–21.

    PubMed  CAS  Google Scholar 

  47. Power GG, Jenkins F. Factors affecting 02 transfer in the sheep and rabbit placenta perfused in situ. Am J Physiol 1975; 229: 1147–1153.

    PubMed  CAS  Google Scholar 

  48. Lorijn RHW, Longo LD. Norepinephrine elevation in the fetal lamb: oxygen consumption and cardiac output. Am J Physiol 1980; 239: R115 - R122.

    PubMed  CAS  Google Scholar 

  49. Wilkening RB, Boyle DW, Meschia G. Fetal neuromuscular blockade: effect on oxygen demand and placenta transport. Am J Physiol 1989; 257: H734 - H738.

    PubMed  CAS  Google Scholar 

  50. Battaglia FC, Meschia G. An introduction to fetal physiology. New York: Academic Press, 1986.

    Google Scholar 

  51. Power GG, Dale PS, Nelson PS. Distribution of maternal and fetal blood flow within cotyledons of the sheep placenta. Am J Physiol 1981; 241: H486 - H496.

    PubMed  CAS  Google Scholar 

  52. Allen DW, Wyman J Jr, Smith CH. The oxygen equilibrium of fetal and adult hemoglobin. J Biol Chem 1953; 203: 81–87.

    PubMed  CAS  Google Scholar 

  53. Wimberley PD. Fetal hemoglobin, 2,3-diphosphoglycerate and oxygen transport in newborn premature infants (thesis). Scand J Cin Lab Invest 1982;suppl 160: 1–149.

    CAS  Google Scholar 

  54. Edelstone DI, Darby MJ, Bass K, et al. Effects of reductions in hemoglobin-oxygen affinity and hematocrit level on oxygen consumption and acid-base state in fetal lambs. Am J Obstet Gynecol 1989; 160: 820–828.

    PubMed  CAS  Google Scholar 

  55. Bard H. Postnatal decline of hemoglobin F synthesis in normal infants. J Clin Invest 1975; 55: 395–398.

    Article  PubMed  CAS  Google Scholar 

  56. Bard H. Postnatal fetal and adult hemoglobin synthesis in early preterm newborn infants. J Clin Invest 1973; 52: 1789–1795.

    Article  PubMed  CAS  Google Scholar 

  57. Bonds Dr, Cheek TG, Crosby LO, et al. Term human fetal umbilical vein oxygen content, placental weight and maternal blood pressure. J Perinatol 1987; 7: 114–117.

    PubMed  CAS  Google Scholar 

  58. Bard H. The effect of placental insufficiency on fetal and adult hemoglobin synthesis. Am J Obstet Gynecol 1974; 120: 67–72.

    PubMed  CAS  Google Scholar 

  59. Thilaganathan B, Salvesen DR, Abbas A, et al. Fetal plasma erythropoietin concentration in red blood cell: isoimmunized pregnancies. Am J Obstet Gynecol 1992; 167: 1292–1297.

    PubMed  CAS  Google Scholar 

  60. Jouppila P, Kirkinen P. Umbilical vein blood flow in the human fetus in cases of maternal and fetal anemia and uterine bleeding. Ultrasound Med Biol 1984; 10: 365–370.

    Article  PubMed  CAS  Google Scholar 

  61. Gollin YG, Copel JA. Management of the Rh-sensitized mother. Clin Perinatol 1995; 22: 545–559.

    PubMed  CAS  Google Scholar 

  62. Kwan E, Rurak DW, Taylor SM. Oxygen consumption, acid-base status and behavior during and after acute, severe hemorrhage in fetal lambs. Am J Physiol 1995; 269: R758 - R766.

    PubMed  CAS  Google Scholar 

  63. Fumia FD, Edelstone DI, Holzman IR. Blood flow and oxygen delivery to fetal organs as functions of fetal hematocrit. Am J Obstet Gynecol 1984; 150: 274–282.

    PubMed  CAS  Google Scholar 

  64. Itskovitz J, Goetzman BW, Roman C, et al. Effects of fetal-maternal exchange transfusion and fetal oxygenation and blood flow distribution. Am J Physiol 1984; 247: H655 - H660.

    PubMed  CAS  Google Scholar 

  65. Arnone A. X-ray diffraction study of binding of 2,3diphosphoglycerate to human deoxyhaemoglobin. Nature 1972; 237: 146–149.

    Article  PubMed  CAS  Google Scholar 

  66. Duhm J. Effects of 2–3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch 1971; 326: 341–356.

    Article  PubMed  CAS  Google Scholar 

  67. Bellingham AJ, Detter JC, Lenfant C. The role of hemoglobin affinity for oxygen and red cell 2,3-diphosphoglycerate in the management of diabetic ketoacidosis. Trans Assoc Am Physicians 1970; 83: 113–120.

    PubMed  CAS  Google Scholar 

  68. Madsen H, Ditzel J. Red cell 2,3-diphosphoglycerate and hemoglobin oxygen affinity during normal pregnancy. Acta Obstet Gynecol Scand 1984; 63: 399–402.

    Article  PubMed  CAS  Google Scholar 

  69. Longo LD, Hardesty JS. Maternal blood volume: measurement, hypothesis of control, and clinical considerations. Rev Perinatol Med 1984; 5: 35–59.

    Google Scholar 

  70. Pritchard JA, Hunt CF. A comparison of the hematologic responses following the routine prenatal administration of intramuscular and oral iron. Surg Gynecol Obstet 1958; 106: 516–518.

    PubMed  CAS  Google Scholar 

  71. Oski FA. Hematological problems. In Avery GB, ed. Neonatology, pathophysiology and management of the newborn. Philadelphia: Lippincott, 1975: 379–422.

    Google Scholar 

  72. Crowe C, Dandekar P, Fox M, et al. The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 1995;515–519.

    Google Scholar 

  73. Moore WMO, Battaglia FC, Hellegers AE. Whole blood oxygen affinities of women with various hemoglobinopathies. Am J Obstet Gynecol 1967; 97: 63–66.

    PubMed  CAS  Google Scholar 

  74. Wilkening RB, Molina RD, Meschia G. Placental oxygen transport in sheep with different hemoglobin types. Am J Physiol 1988; 254: R585 - R589.

    PubMed  CAS  Google Scholar 

  75. Hebbel RP, Berger EM, Eaton JW. Effect of increased maternal hemoglobin oxygen affinity on fetal growth in the rat. Blood 1980; 55: 969–974.

    PubMed  CAS  Google Scholar 

  76. Bartels H. Prenatal respiration. Amsterdam: North Holland, 1970.

    Google Scholar 

  77. Hill EP, Power GG, Longo LD. A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen. Am J Physiol 1973; 224: 283–299.

    PubMed  CAS  Google Scholar 

  78. Crino JP, Harris AP, Parisi VM, et al. Effect of rapid intravenous crystalloid infusion on uteroplacental blood flow and placental implantation-site oxygen delivery in the pregnant ewe. Am J Obstet Gynecol 1993; 168: 1603–1609.

    PubMed  CAS  Google Scholar 

  79. Assali NS, Douglas RA Jr, Baird WW, et al. Measurements of uterine blood flow and uterine metabolism. IV. Results in normal pregnancy. Am J Obstet Gynecol 1953; 66: 248–253.

    PubMed  CAS  Google Scholar 

  80. Metcalfe J, Romney SL, Ramsey LH, et al. Estimation of uterine blood flow in normal human pregnancy at term. J Clin Invest 1955; 34: 1632–1638.

    Article  PubMed  CAS  Google Scholar 

  81. Parer JT,, de Lannoy CW, Hoversland AS et al. Effect of decreased uterine blood flow on uterine oxygen consumption in pregnant macaques. Am J Obstet Gynecol 1968; 100: 813–820.

    PubMed  CAS  Google Scholar 

  82. Fuller EU, Manning MW, Nutter DO, et al. A perfused uterine preparation for the study of uterine and fetal physiology. In: Longo LD, Reneau DD, eds. Fetal and newborn cardiovascular physiology, vol. 2, Fetal and newborn circulation. New York: Garland, 1978: 421–435.

    Google Scholar 

  83. Ehrenkranz RA, Walker AM, Oakes GK, et al. Effect of ritodrine infusion on uterine and umbilical blood flow. Am J Obstet Gynecol 1976; 126: 343–349.

    PubMed  CAS  Google Scholar 

  84. Lucas WT, Kirschbaum T, Assali NS. Spinal shock and fetal oxygenation. Am J Obstet Gynecol 1965; 93: 583–587.

    PubMed  CAS  Google Scholar 

  85. Hooper SB, Walker DW, Harding R. Oxygen, glucose, and lactate uptake by fetus and placenta during prolonged hypoxemia. Am J Physiol 1995; 268: R303 - R309.

    PubMed  CAS  Google Scholar 

  86. Longo LD, Dale PS, Gilbert RD. Uteroplacental Oz uptake: continuous measurements during uterine quiescence and contractions. Am J Physiol 1986; 250: R1099 - R1107.

    PubMed  CAS  Google Scholar 

  87. Clapp JF III. The relationship between blood flow and oxygen uptake in the uterine and umbilical circulations. Am J Obstet Gynecol 1978; 132: 410–413.

    PubMed  Google Scholar 

  88. Dawes GS, Mott JC. Changes in O2 distribution and consumption in foetal lambs with variations in umbilical blood flow. J Physiol (Lond) 1964; 170: 524–540.

    CAS  Google Scholar 

  89. Wilkening RB, Meschia G. Effect of umbilical blood flow on transplacental diffusion of ethanol and oxygen. Am J Physiol 1989; 256: H813 - H820.

    PubMed  CAS  Google Scholar 

  90. Power GG, Longo LD. Sluice flow in placenta: maternal vascular pressure effects on fetal circulation. Am J Physiol 1973; 225: 1490–1496.

    PubMed  CAS  Google Scholar 

  91. Cottle MKW, Van Petten GR, Van Muyden P. Depression of uterine blood flow in response to cord compression in sheep. Can J Physiol Pharmacol 1982; 60: 825–829.

    Article  PubMed  CAS  Google Scholar 

  92. Hasaart THM, De Haan J. Depression of uterine blood flow during total umbilical cord occlusion in sheep. Eur J Obstet Gynecol Reprod Biol 1985; 19: 125–131.

    Article  PubMed  CAS  Google Scholar 

  93. Rosenfeld CR. Distribution of cardiac output in ovine pregnancy. Am J Physiol 1977; 232: H231 - H235.

    PubMed  CAS  Google Scholar 

  94. Rosenfeld CR. Consideration of the uteroplacental circulation in intrauterine growth. Semin Perinatol 1984; 8: 42–51.

    PubMed  CAS  Google Scholar 

  95. Rosenfeld CR, Morriss FH Jr, Makowski EL. Circulatory changes in the reproductive tissue of ewes during pregnancy. Gynecol Invest 1974; 5: 252–268.

    Article  PubMed  CAS  Google Scholar 

  96. Wilkening RB, Anderson S, Martensson L. Placental transfer as a function of uterine blood flow. Am J Physiol 1982; 242: H429 - H436.

    PubMed  CAS  Google Scholar 

  97. Power GG, Longo LD. Graphical analysis of maternal and fetal exchange of O2 and CO2,. J Appl Physiol 1969; 26: 38–47.

    PubMed  CAS  Google Scholar 

  98. Nylund L, Lunell N-O, Lewander R, et al. Uteroplacental blood flow in a diabetic pregnancy: measurements with indium 113m and a computer-linked gamma camera. Am J Obstet Gynecol 1982; 144: 298–302.

    PubMed  CAS  Google Scholar 

  99. Kaar K, Jouppilka P, Kuikka J, et al. Intervillous blood flow in normal and complicated late pregnancy measured by means of an intravenous 133Xe method. Acta Obstet Gynecol Scand 1980; 59: 7–10.

    Article  PubMed  CAS  Google Scholar 

  100. Blechner JN, Stenger VG, Prystowsky H. Blood flow to the human uterus during maternal metabolic acidosis. Am J Obstet Gynecol 1975; 121: 789–794.

    PubMed  CAS  Google Scholar 

  101. Lunell NO, Nylund LE, Lewander R, et al. Uteroplacental blood flow in preeclampsia. Measurements with indium-113m and a computer-linked gamma camera. J Exp Clin Hypertens 1982; B1: 105–117.

    CAS  Google Scholar 

  102. Rauramo I, Forss M, Kariniemi V, et al. Antepartum fetal heart rate variability and intervillous placental blood flow in association with smoking. Am J Obstet Gynecol 1983; 147: 967–969.

    Google Scholar 

  103. Reilly FD, Russe PT. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec 1977; 188: 277–286.

    Article  PubMed  CAS  Google Scholar 

  104. Spivak M. The anatomic peculiarities of the human umbilical cord and their clinical significance. Am J Obstet 1946; 52: 387–401.

    Google Scholar 

  105. Magness RR, Mitchell MD, Rosenfeld CR. Uteroplacental production of eicosanoids in ovine pregnancy. Prostaglandins 1990; 39: 75–88.

    Article  PubMed  CAS  Google Scholar 

  106. Kawano M, Mori N. Prostacyclin producing activity of human umbilical, placental and uterine vessels. Prostaglandins 1983; 26: 645–662.

    Article  PubMed  CAS  Google Scholar 

  107. Ylikorkala O, Viinikka L. Thromboxane AZ in pregnancy and puerperium. Br Med J 1980; 281: 1601–1602.

    Article  PubMed  Google Scholar 

  108. Mak KK-W, Gude NM, Walters WAW, Boura ALA. Effects of vasoactive autocoids in the human umbilical-fetal placental vasculature. Br J Obstet Gynaecol 1984; 91: 99–106.

    Article  PubMed  CAS  Google Scholar 

  109. Glance DG, Elder MG, Myatt L. The actions of prostaglandins and their interactions with angiotensin II in the isolated perfused human placental cotyledon. Br J Obstet Gynaecol 1986; 93: 488–494.

    PubMed  CAS  Google Scholar 

  110. Bjoro K, Stray-Pedersen S. Effects of vasoactive autocoids on different segments of human umbilicoplacental vessels. Gynecol Obstet Invest 1986; 22: 1–6.

    Article  PubMed  CAS  Google Scholar 

  111. Maigaard S, Forman A, Anderson KE. Relaxant and contractile effects of some amines and prostanoids in myometrial and vascular smooth muscle within the human uteroplacental unit. Acta Physiol Scand 1986; 128: 33–40.

    Article  PubMed  CAS  Google Scholar 

  112. Walsh SW. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am J Obstet Gynecol 1985; 152: 335–340.

    PubMed  CAS  Google Scholar 

  113. Ekblad U, Erkkola R, Uotila P. Effect of hypoxia on the release of prostaglandin, prostacyclin and thromboxane in perfused human placenta. Contrib Gynec Obstet 1985; 13: 173.

    CAS  Google Scholar 

  114. Naden RP, Iliya CA, Arant BS Jr, et al. Hemodynamic effects of indomethacin in chronically instrumented pregnant sheep. Am J Obstet Gynecol 1985; 151: 484–493.

    PubMed  CAS  Google Scholar 

  115. Thorp JA, Walsh SW, Brath PC. Comparison of the vasoactive effects of leukotrienes with thromboxane mimic in the perfused human placenta. Am J Obstet Gynecol 1988; 159: 1376–1380.

    PubMed  CAS  Google Scholar 

  116. Benedetto C, Barbero M, Rey L, et al. Production of prostacyclin, 6-keto PGF1, alpha and thromboxane B2 by human umbilical vessels increases from the placenta towards the fetus. Br J Obstet Gynaecol 1987; 94: 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  117. Bjoro K, Haugen G, Stray-Pedersen S. Altered prostanoid formation in human umbilical vasculature in response to variations in oxygen tension. Prostaglandins 1987; 34: 377–384.

    Article  PubMed  CAS  Google Scholar 

  118. McGrath JC, MacLennan SJ, Cameron-Mann A, et al. Contraction of human umbilical artery, but not vein, by oxygen. J Physiol 1986; 380: 513–519.

    PubMed  CAS  Google Scholar 

  119. Paulick RP, Meyers RL, Rudolph CD, et al. Venous responses to hypoxemia in the fetal lamb. J Dev Physiol 1990; 14: 81–88.

    PubMed  CAS  Google Scholar 

  120. Rosenfeld CR, Naden RP. Responses of uterine and nonuterine tissues to angiotensin II in ovine pregnancy. Am J Physiol 1989; 257: H17 - H24.

    PubMed  CAS  Google Scholar 

  121. Chesley LC, Talledo E, Bohler CS, et al. Vascular reactivity to angiotensin II and norepinephrine in pregnant and nonpregnant women. Am J Obstet Gynecol 1965; 91: 837–842.

    PubMed  CAS  Google Scholar 

  122. Magness RR, Rosenfeld CR. Systemic and uterine responses to alpha adrenergic stimulation in pregnant and nonpregnant ewes. Am J Obstet Gynecol 1986; 155: 897–904.

    PubMed  CAS  Google Scholar 

  123. Magness RR, Osei-Boaten K, Mitchell MD, Rosenfeld CR. In vitro prostacyclin production by ovine uterine and systemic arteries: effects of angiotensin II. J Clin Invest 1985; 76: 2206–2212.

    Article  PubMed  CAS  Google Scholar 

  124. Taylor GM, Peart WS, Porter KA, et al. Concentration and molecular forms of active and inactive renin in human fetal kidney, amniotic fluid and adrenal gland: evidence for renin-angiotensin system hyperactivity in 2nd trimester of pregnancy. J Hypertens 1986; 4: 121–129.

    Article  PubMed  CAS  Google Scholar 

  125. Iwamoto HS, Rudolph AM. Effects of angiotensin II on the blood flow and its distribution in fetal lambs. Circ Res 1981; 48: 183–189.

    Article  PubMed  CAS  Google Scholar 

  126. Berman W Jr, Goodlin RC, Heyman MA, et al. Effects of pharmacologic agents on umbilical blood flow in fetal lambs in utero. Biol Neonate 1978; 33: 225–235.

    Article  PubMed  CAS  Google Scholar 

  127. Yoshimura T, Magness RR, Rosenfeld CR. Angiotensin II and alpha agonist. I. Responses of ovine fetoplacental vasculature. Am J Physiol 1990; 259: H464 - H472.

    PubMed  CAS  Google Scholar 

  128. Magness RR, Rosenfeld CR. Local and systemic estradiol-12β: effects on uterine and systemic vasodilation. Am J Physiol 1989; 256: E536 - E542.

    PubMed  CAS  Google Scholar 

  129. Rosenfeld CR, Morriss FH Jr, Battaglia FC, et al. Effect of estradiol-17 beta on blood flow to reproductive and non-reproductive tissues in pregnant ewes. Am J Obstet Gynecol 1976; 124: 618–629.

    PubMed  CAS  Google Scholar 

  130. Jauniaux E, Johnson MR, Jurkovic D, et al. The role of relaxin in the development of the uteroplacental circulation in early pregnancy. Obstet Gynecol 1994; 84: 338–342.

    PubMed  CAS  Google Scholar 

  131. Scommegna A, Baard L, Bienarz J. Progesterone and pregnenolone sulfate in pregnancy plasma. Am J Obstet Gynecol 1972; 113: 60–65.

    PubMed  CAS  Google Scholar 

  132. Rosenfeld CR. Regulation of the placental circulation. In: Polin RA, Fox WW, eds. Fetal and neonatal physiology. Philadelphia: WB Saunders, 1992: 56–62.

    Google Scholar 

  133. Omar HA, Ramirez R, Gibson M. Properties of a progesterone-induced relaxation in human placental arteries and veins. J Clin Endocrinol Metab 1995; 80: 370–373.

    Article  PubMed  CAS  Google Scholar 

  134. Petersen LK, Svane D, Uldbjerg N, et al. Effects of human relaxin on isolated rat and human myometrium and uteroplacental arteries. Obstet Gynecol 1991; 78: 757–762.

    PubMed  CAS  Google Scholar 

  135. Dombrowski MP, Savoy-Moore RT, Schwartz K, et al. Effect of porcine relaxin on the human umbilical artery. J Reprod Med 1986; 31: 467–472.

    PubMed  CAS  Google Scholar 

  136. Goetz KL. Physiology and pathophysiology of atrial peptides. Am J Physiol 1988; 254: E1 - E15.

    PubMed  CAS  Google Scholar 

  137. Cogan MG. Renal effects of atrial natriuretic factor. Annu Rev Physiol 1990; 52: 699–708.

    Article  PubMed  CAS  Google Scholar 

  138. Garcia R, Thibault G, Nutt RF, et al. Comparative vasoactive effects of inactive and synthetic atrial natriuretic factor. Biochem Biophys Res Commun 1984; 119: 685–688.

    Article  PubMed  CAS  Google Scholar 

  139. Winquist RJ, Faison EP, Waldman SA. Atrial natriuretic factor elicits endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 1984; 81: 7661–7664.

    Article  PubMed  CAS  Google Scholar 

  140. Lim AT, Gude NM. Atrial natriuretic factor production by the human placenta. J Clin Endocrinol Metab 1995; 80: 3091–3093.

    Article  PubMed  CAS  Google Scholar 

  141. Wei Y, Rodi CP, Day ML, et al. Developmental changes in the rat atriopeptin hormone system. J Clin Invest 1987; 79: 1325–1329.

    Article  PubMed  CAS  Google Scholar 

  142. McQueen J, Jardine A, Kingdom J, et al. Interaction of angiotensin II and atrial natriuretic peptide in the human fetoplacental unit. Am J Hypertens 1990; 3: 641–644.

    PubMed  CAS  Google Scholar 

  143. Markenson GR, Foley K, Maslow AS, et al. The effects of atrial natriuretic factor and angiotensin II on fetal-placental perfusion pressure in the ex vivo cotyledon model. Am J Obstet Gynecol 1995; 173: 1143–1147.

    Article  PubMed  CAS  Google Scholar 

  144. Hatjis CG, Grogan BA. Atrial natriuretic peptide receptors in normal human placentas. Am J Obstet Gynecol 1988; 159: 587–591.

    PubMed  CAS  Google Scholar 

  145. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–376.

    Article  PubMed  CAS  Google Scholar 

  146. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–526.

    Article  PubMed  CAS  Google Scholar 

  147. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–666.

    Article  PubMed  CAS  Google Scholar 

  148. Pollock JS, Forstermann U, Mitchell JA, et al. Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proc Nat Acad Sci USA 1991; 88: 10480–10484.

    Article  PubMed  CAS  Google Scholar 

  149. Ignarro LJ, Harbinson GR, Wood KS, et al. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin, and arachidonic acid. J Pharmacol Exp Ther 1986; 237: 893–900.

    PubMed  CAS  Google Scholar 

  150. Ignarro LJ, Burke TM, Wood KS, et al. Association between cyclic GMP accumulation and acetylcholine-elicited relaxation of bovine intrapulmonary artery. J Pharmacol Exp Ther 1983; 228: 682–690.

    Google Scholar 

  151. Murad FD. Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 1986; 78: 1–5.

    Article  PubMed  CAS  Google Scholar 

  152. Oda H, Kusumoto S, Nakajima T. Nitrosyl-hemoglobin formation in the blood of animals exposed to nitric oxide. Arch Environ Health 1975; 30: 453–456.

    PubMed  CAS  Google Scholar 

  153. Yoshida K, Kasama K. Biotransformation of nitric oxide. Environ Health Perspect 1987; 73: 201–206.

    Article  PubMed  CAS  Google Scholar 

  154. Chiodi H, Mohler JG. Effects of exposure of blood hemoglobin to nitric oxide. Environ Res 1985; 37: 355–363.

    Article  PubMed  CAS  Google Scholar 

  155. Nanaev A, Chwalisz K, Frank H-G, et al. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res 1995; 282: 407–421.

    Article  PubMed  CAS  Google Scholar 

  156. Conrad KP, Joffe GM, Kruszyna H, et al. Identification of increased nitric oxide biosynthesis during pregnancy in rats. FASEB J 1993; 7: 566–571.

    PubMed  CAS  Google Scholar 

  157. Neri I, Renzo GCD, Caserta G, et al. Impact of the L-arginine/nitric oxide system in pregnancy. Obstet Gynecol Sury 1995; 50: 851–858.

    Article  CAS  Google Scholar 

  158. Ignarro LJ, Lippton H, Edwards JC, et al. Mechanisms of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 1981; 218: 739–749.

    PubMed  CAS  Google Scholar 

  159. Myatt L, Brewer A, Brockman DE. The actions of nitric oxide in the perfused fetal-placental circulation. Am J Obstet Gynecol 1991; 164: 687–692.

    PubMed  CAS  Google Scholar 

  160. McCarthy AL, Woolfson RG, Evans BJ, et al. Functional characteristics of small placental arteries. Am J Obstet Gynecol 1994; 170: 945–951.

    PubMed  CAS  Google Scholar 

  161. Wieczorek KM, Brewer AS, Myatt L. Shear stress may stimulate release and action of nitric oxide in the human fetal-placental vasculature. Am J Obstet Gynecol 1995; 173: 708–713.

    Article  PubMed  CAS  Google Scholar 

  162. Morris HN, Eaton BM, Sooranna SR, et al. NO synthase activity in placental bed and tissues from normotensive pregnant women. Lancet 1993; 342: 679–680.

    Article  PubMed  CAS  Google Scholar 

  163. Conrad KP, Vill M, McGuire PG, et al. Expression of nitric oxide synthase by syncytiotrophoblast in human placental villi. FASEB J 1993; 7: 1269–1276.

    PubMed  CAS  Google Scholar 

  164. Gokhale SD, Gulati OD, Kelkar LV, et al. Effect of some drugs on human umbilical artery in vitro. Br J Pharmacol Chemother 1966; 27: 332–346.

    PubMed  CAS  Google Scholar 

  165. Van de Voorde J, Vanderstichele H, Leusen I. Release of endothelium derived relaxing factor from human umbilical vessels. Circ Res 1987; 60: 517–522.

    Article  Google Scholar 

  166. Chaudhuri G, Furuya K. Endothelium-derived vasoactive substances in fetal placental vessels. Semin Perinatol 1991; 15: 63–67.

    PubMed  CAS  Google Scholar 

  167. Izumi H, Garfield RE, Makino Y, et al. Gestational changes in endothelium-dependent vasorelaxation in human umbilical artery. Am J Obstet Gynecol 1994; 170: 236–245.

    PubMed  CAS  Google Scholar 

  168. Gonzalez C, Cruz MA, Gallardo V, et al. Nitric oxide and prostaglandin systems inhibition on the isolated perfused human placenta from normal and pre-eclamptic pregnancies. Gynecol Obstet Invest 1995; 40: 244–248.

    Article  PubMed  CAS  Google Scholar 

  169. Chaudhuri G, Cuevas J, Buga GM, et al. NO is more important than prostacyclin in maintaining low vascular tone in feto-placental vessels. Am J Physiol 1993; 265: H2036 - H2043.

    PubMed  CAS  Google Scholar 

  170. Trudinger BJ, Giles WB, Cook CM, et al. Fetal umbilical artery velocity wave forms and placental resistance: clinical significance. Br J Obstet Gynaecol 1985; 92: 23–30.

    PubMed  CAS  Google Scholar 

  171. Bussolino E, Benedetto C, Massobrio M, et al. Maternal vascular prostacyclin activity in pre-eclampsia. Lancet 1980; 2: 702.

    Article  PubMed  CAS  Google Scholar 

  172. Remuzzi G, Marchesi D, Zoja C, et al. Reduced umbilical and placental vascular prostacyclin production in severe preeclampsia. Prostaglandins 1980; 20: 105–113.

    Article  PubMed  CAS  Google Scholar 

  173. Walsh SW. Progesterone and estradiol production by normal and preeclamptic placentas. Obstet Gynecol 1988; 71: 222–226.

    PubMed  CAS  Google Scholar 

  174. Walsh SW, Coulter S. Increased placental progesterone may cause decreased placental prostacyclin production in preeclampsia. Am J Obstet Gynecol 1989; 161: 1586–1592.

    PubMed  CAS  Google Scholar 

  175. Grunewald C, Nisell H, Jansson T, et al. Possible improvement in uteroplacental blood flow during atrial natriuretic peptide infusion in preeclampsia. Obstet Gynecol 1994; 84: 235–239.

    PubMed  CAS  Google Scholar 

  176. Jannson TB. Low-dose infusion of atrial natriuretic peptide in the conscious guinea pig increases blood flow to the placenta of growth-retarded fetuses. Am J Obstet Gynecol 1992; 166: 213–218.

    Google Scholar 

  177. Lyall F, Young A, Greer IA. Nitric oxide concentrations are increased in the fetoplacental circulation in preeclampsia. Am J Obstet Gynecol 1995; 173: 714–718.

    Article  PubMed  CAS  Google Scholar 

  178. Ghabour MS, Eis ALW, Brockman DE, et al. Immunohistochemical characterization of placental nitric oxide synthase expression in preeclampsia. Am J Obstet Gynecol 1995; 173: 687–694.

    Article  PubMed  CAS  Google Scholar 

  179. Morris NH, Sooranna SR, Learmont JG, et al. Nitric oxide synthase activities in placental tissue from normotensive, pre-eclamptic and growth retarded pregnancies. Br J Obstet Gynaecol 1995; 102: 711–714.

    Article  PubMed  CAS  Google Scholar 

  180. Shanklin DR, Sibai BM. Ultrastructural aspects of pre-eclampsia. Placental bed and uterine boundary vessels. Am J Obstet Gynecol 1989; 161: 735–741.

    PubMed  CAS  Google Scholar 

  181. Smarason AK, Sargent IL, Redman CWG. Endothelial cell proliferation is suppressed by plasma but not serum from women with preeclampsia. Am J Obstet Gynecol 1996; 174: 787–793.

    Article  PubMed  CAS  Google Scholar 

  182. Luzi G, Abubakari MM, Clerici G, et al. Fetomaternal hemodynamics during maternal glyceryl-trinitrate sublingual administration. Soc Gynecol Invest J 1995; 2: 177.

    Article  Google Scholar 

  183. Giles W, O’Callaghan S, Boura A, et al. Reduction in human fetal umbilical-placental vascular resistance by glyceryl-trinitrate. Lancet 1992; 340: 856.

    Article  PubMed  CAS  Google Scholar 

  184. Ramsay B, De Belder A, Campbell S, et al. A nitric oxide donor improves uterine artery diastolic blood flow in normal early pregnancy and in women at risk of preeclampsia. Eur J Clin Invest 1994; 24: 76–78.

    Article  PubMed  CAS  Google Scholar 

  185. Born GVR, Dawes GS, Mott JC. Oxygen lack and autonomic nervous control of the foetal circulation in the lamb. J Physiol (Lond) 1956; 134: 149–166.

    CAS  Google Scholar 

  186. Adamsons K, Beard RW, Myers RE. Comparison of the composition of arterial, venous and capillary blood of the fetal monkey during labor. Am J Obstet Gynecol 1970; 107: 435–440.

    PubMed  CAS  Google Scholar 

  187. Blechner JN. Maternal-fetal acid-base physiology. Clin Obstet Gynecol 1993; 36: 3–12.

    Article  PubMed  CAS  Google Scholar 

  188. Soothill PW, Nicolaides KH, Rodeck CH, et al. Blood gases and acid-base status of human second-trimester fetus. Obstet Gynecol 1986; 68: 173–176.

    PubMed  CAS  Google Scholar 

  189. Nicolaides KH, Economides DL, Soothill PW. Blood gases, pH and lactate in appropriate and small-forgestational-age fetuses. Am J Obstet Gynecol 1989; 161: 996–1001.

    PubMed  CAS  Google Scholar 

  190. Young BK. Placental regulation of fetal oxygenation and acid-base balance. In: Eden RD, Boehm FH, eds. Assessment and care of the fetus: physiological, clinical and medicolegal principles. Norwalk, CT: Appleton & Lange, 1990: 171–177.

    Google Scholar 

  191. Longo LD, Delivoria-Papadopoulos M, Forster RE. Placental CO2 transfer after fetal carbonic anhydrase inhibition. Am J Physiol 1974; 226: 703–710.

    PubMed  CAS  Google Scholar 

  192. Hatano H, Leichtweib HP, Schroder H. Uptake of bicarbonate/CO2 in the isolated guinea pig placenta. Placenta 1989; 10: 213–221.

    Article  PubMed  CAS  Google Scholar 

  193. Simkovich JW, Cefalo RC, Hellegers AE, et al. Effect of fetal hypercapnia on maternal and fetal cardiovascular and respiratory function. Eur J Obstet Gynecol Reprod Biol 1983; 14: 311–315.

    Article  PubMed  CAS  Google Scholar 

  194. Ralston DH, Shnider SM, deLorimier AA. Uterine blood flow and fetal acid-base changes after bicarbonate administration to the pregnant ewe. Anesthesiology 1974; 40: 348–353.

    Article  PubMed  Google Scholar 

  195. Blechner JN, Stenger VG, Eitzman DV, et al. Effects of maternal acidosis on the human fetus and newborn infant. Am J Obstet Gynecol 1967; 99: 46–54.

    PubMed  CAS  Google Scholar 

  196. Chang A, Wood C. Fetal acid-base balance. Interdependence of maternal and fetal PCO2 and bicarbonate concentration. Am J Obstet Gynecol 1976; 125: 61–63.

    PubMed  CAS  Google Scholar 

  197. Aarnoudse JG, Illsley NP, Penfold P, et al. Permeability of the human placenta to bicarbonate: in-vitro perfusion studies. Br J Obstet Gynaecol 1984; 91: 1096–1102.

    Article  PubMed  CAS  Google Scholar 

  198. Huch R. Maternal hyperventilation and the fetus. J Perinat Med 1986; 14: 3–17.

    Article  PubMed  CAS  Google Scholar 

  199. Cruikshank DP, Hays PA. Maternal physiology in pregnancy. In: Gabbe SG, ed. Obstetrics: normal and problem pregnancies. New York: Churchill-Livingstone, 1991: 125–146.

    Google Scholar 

  200. Bardicef O, Bardicef M, Sorokin Y, et al. “Physiologic” intracellular acidosis in pregnancy. Am J Obstet Gynecol 1995; 173: 879–880.

    Article  PubMed  CAS  Google Scholar 

  201. Machida H. Influence of progesterone on arterial blood and CSF acid-base balance in women. J Appl Physiol 1981; 51: 1433–1436.

    PubMed  CAS  Google Scholar 

  202. Bayliss DA, Millhorn DE, Gallman EA, et al. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat. Proc Natl Acad Sci USA 1987; 84: 7788–7792.

    Article  PubMed  CAS  Google Scholar 

  203. Yancey MK, Moore J, Brady K, et al. The effect of altitude on umbilical cord blood gases. Obstet Gynecol 1992; 79: 571–574.

    PubMed  CAS  Google Scholar 

  204. Walker AM, Oakes GK, Ehrenkranz R, et al. Effects of hypercapnia on uterine and umbilical circulations in conscious pregnant sheep. J Appl Physiol 1976; 41: 727–733.

    PubMed  CAS  Google Scholar 

  205. Levinson G, Shnider SM, deLorimier AA, et al. Effects of maternal hyperventilation on uterine blood flow and fetal oxygenation and acid-base status. Anesthesiology 1974; 40: 340–347.

    Article  PubMed  CAS  Google Scholar 

  206. Moya F, Morishima HO, Shnider SM, et al. Influence of maternal hyperventilation on the newborn infant. Am J Obstet Gynecol 1965; 91: 76–84.

    PubMed  CAS  Google Scholar 

  207. Miller FC, Petrie RH, Arce JJ, et al. Hyperventilation during labor. Am J Obstet Gynecol 1974; 120: 489–495.

    PubMed  CAS  Google Scholar 

  208. Goldaber KG, Gilstrap LC III, Leveno KJ, et al. Pathologic fetal acidemia. Obstet Gynecol 1991; 78: 1103–1106.

    PubMed  CAS  Google Scholar 

  209. Fee SC, Malee K, Deddish R, et al. Severe acidosis and subsequent neurologic status. Am J Obstet Gynecol 1990; 162: 802–806.

    PubMed  CAS  Google Scholar 

  210. Antoine C, Young BK. Fetal lactic acidosis with epidural anesthesia. Am J Obstet Gynecol 1982; 142; 55–59.

    PubMed  CAS  Google Scholar 

  211. Suidan JS, Antoine C, Silverman F, et al. Human maternal-fetal lactate relationships. J Perinat Med 1984; 12: 211–217.

    Article  PubMed  CAS  Google Scholar 

  212. Katz M, Lunenfeld E, Meizner I, et al. The effect of the duration of the second stage of labour on the acid-base state of the fetus. Br J Obstet Gynaecol 1987; 94: 425–430.

    Article  PubMed  CAS  Google Scholar 

  213. Burd LJ, Jones MD, Simmonds MA, et al. Placental production and foetal utilization of lactate and pyruvate. Nature 1975; 254: 710–711.

    Article  PubMed  CAS  Google Scholar 

  214. Westgren M, Lingman G, Stangenberg M. Oxygenation of the human fetus as a function of hemoglobin concentration. Am J Perinatol 1994; 11: 9–13.

    Article  PubMed  CAS  Google Scholar 

  215. Hellegers AE, Armsted EE, Thomas CE, et al. Effect of fetal metabolic acidosis upon oxygen environment. Am J Obstet Gynecol 1969; 105: 786–796.

    PubMed  CAS  Google Scholar 

  216. Hankins GDV, Snyder RR, Yoemans ER. Umbilical arterial and venous acid-base and blood gas values and the effect of chorioamnionitis on those values in a cohort of preterm infants. Am J Obstet Gynecol 1991; 164: 1261–1264.

    PubMed  CAS  Google Scholar 

  217. Maberry MC, Ramin SM, Gilstrap LC III, et al. Intrapartum asphyxia in pregnancies complicated by intraamniotic infection. Obstet Gynecol 1990; 76: 351–354.

    PubMed  CAS  Google Scholar 

  218. Piquard F, Hsiung R, Schaefer A, et al. Does fetal acidosis develop with maternal glucose infusion during normal labor? Obstet Gynecol 1989; 74: 909–914.

    PubMed  CAS  Google Scholar 

  219. Philipson EH, Kalhan SC, Riha MM, et al. Effects of maternal glucose infusion on fetal acid-base status in human pregnancy. Am J Obstet Gynecol 1987; 157: 866–873.

    PubMed  CAS  Google Scholar 

  220. Kenepp NB, Shelley WC, Gabbe SG, et al. Fetal and neonatal hazards of maternal hydration with 5% dextrose before caesarean section. Lancet 1982; 1: 1150–1152.

    Article  PubMed  CAS  Google Scholar 

  221. Jenkins VR II, Dilts PV Jr. Some effects of meperidine hydrochloride on maternal and fetal sheep. Am J Obstet Gynecol 1971; 109: 1005–1010.

    PubMed  CAS  Google Scholar 

  222. Clark RB, Cooper JO, Stephens SR, et al. Neonatic acid-base studies: effect of heavy medication-narcotic antagonist regimen for labor and delivery. Obstet Gynecol 1969; 33: 30–34.

    Article  PubMed  CAS  Google Scholar 

  223. Shyken JM, Smeltzer JS, Baxi LV, et al. A comparison of the effect of epidural, general, and no anesthesia on funic acid-base values by stage of labor and type of delivery. Am J Obstet Gynecol 1990; 163: 802–807.

    PubMed  CAS  Google Scholar 

  224. Ralston DH, Shnider SM. The fetal and neonatal effects of regional anesthesia in obstetrics. Anesthesiology 1978; 48: 34–64.

    Article  PubMed  CAS  Google Scholar 

  225. Datta S, Alper MH, Ostheimer GW, et al. Method of ephedrine administration and nausea and hypotension during spinal anesthesia for cesarean section. Anesthesiology 1982; 56: 68–70.

    Article  PubMed  CAS  Google Scholar 

  226. Datta S, Ostheimer GW, Weiss JB, et al. Neonatal effect of prolonged anesthetic induction for cesarean section. Obstet Gynecol 1981; 58: 331–335.

    PubMed  CAS  Google Scholar 

  227. Mann LI, Bhakthavathsalan A, Liu M, et al. Placental transport of alcohol and its effect on maternal and fetal acid-base balance. Am J Obstet Gynecol 1975; 122: 837–844.

    CAS  Google Scholar 

  228. Horiguchi T, Suzuki K, Comas-Urrutia AC, et al. Effect of ethanol upon uterine activity and fetal acid-base state of the rhesus monkey. Am J Obstet Gynecol 1971; 109: 910–917.

    PubMed  CAS  Google Scholar 

  229. Ayromlooi J, Tobias M, Berg PD, et al. Effects of ethanol on the circulation and acid-base balance of pregnant sheep. Obstet Gynecol 1979; 54: 624–630.

    PubMed  CAS  Google Scholar 

  230. Socol ML, Manning FA, Murata Y, et al. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol 1982; 142: 214–218.

    PubMed  CAS  Google Scholar 

  231. Woods JR Jr, Plessinger MA, Clark KE. Effect of cocaine on uterine blood flow and fetal oxygenation. JAMA 1987; 257; 957–961.

    Article  PubMed  CAS  Google Scholar 

  232. MacGregor SN, Keith LG, Chasnoff IJ, et al. Cocaine use during pregnancy: adverse perinatal outcome. Am J Obstet Gynecol 1987; 157: 686–690.

    PubMed  CAS  Google Scholar 

  233. Bowen F. Management issues for the neonatal patient. Clin Perinatol 1996; 23: 1–30.

    PubMed  CAS  Google Scholar 

  234. Goldaber KG, Gilstrap LC III. Correlations between obstetric clinical events and umbilical cord blood acid-base and blood gas values. Clin Obstet Gynecol 1993; 36: 47–59.

    Article  PubMed  CAS  Google Scholar 

  235. Ramin SM, Gilstrap LC III, Leveno KH, et al. Umbilical artery acid-base status in the preterm infant. Obstet Gynecol 1989; 74: 256–258.

    PubMed  CAS  Google Scholar 

  236. Cox WL, Daffos F, Forestier F, et al. Physiology and management of intrauterine growth retardation: a biologic approach with fetal blood sampling. Am J Obstet Gynecol 1988; 159: 36–41.

    PubMed  CAS  Google Scholar 

  237. Robillard JE, Sessions C, Kennedy RL, et al. Metabolic effects of constant hypertonic glucose infusion in well-oxygenated fetuses. Am J Obstet Gynecol 1978; 130: 199203.

    Google Scholar 

  238. Crandell SS, Fisher DJ, Morriss FH Jr. Effects of ovine maternal hyperglycemia on fetal regional blood flows and metabolism. Am J Physiol 1985; 249: E454 - E460.

    PubMed  CAS  Google Scholar 

  239. Phillips AF, Porte PJ, Stabinsky S, et al. Effects of chronic fetal hyperglycemia upon oxygen consumption in the ovine uterus and conceptus. J Clin Invest 1984; 74: 279–286.

    Article  Google Scholar 

  240. Gilstrap LC III, Hauth JC, Schiano S, et al. Neonatal acidosis and method of delivery. Obstet Gynecol 1984; 63: 681–685.

    PubMed  Google Scholar 

  241. Barcroft J. The respiratory function of the blood. Part II. Haemoglobin. Cambridge: Cambridge University Press, 1928: 1–200.

    Google Scholar 

  242. Howard RB, Hosokawa T, Maguire MH. Hypoxiainduced fetoplacental vasoconstriction in perfused human placental cotyledons. Am J Obstet Gynecol 1987; 157: 1261–1266.

    PubMed  CAS  Google Scholar 

  243. Soderholm B. The hemodynamics of the lesser circulation in pulmonary tuberculosis. Effect of exercise, temporal unilateral pulmonary artery occlusion and operation. Scand J Clin Lab Invest 1957; 9 (suppl 26): 1–111.

    PubMed  Google Scholar 

  244. Swenson EW, Finley TN, Gusman SV. Unilateral hypo-ventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest 1961; 40: 828–835.

    Article  PubMed  CAS  Google Scholar 

  245. Wilkening RB, Meschia G. Effect of occluding one umbilical artery on placental oxygen transport. Am J Physiol 1991; 260: H1319 - H1325.

    PubMed  CAS  Google Scholar 

  246. Moore LG, Jahnigen D, Rounds SS, et al. Maternal hyperventilation helps preserve arterial oxygenation during high-altitude pregnancy. J Appl Physiol 1982; 52: 690–694.

    PubMed  CAS  Google Scholar 

  247. Moore LG, Rounds SS, Jahnigen D, et al. Infant birth weight is related to maternal arterial oxygenation at high altitude. J Appl Physiol 1982; 52: 695–699.

    PubMed  CAS  Google Scholar 

  248. Kaiser IH, Cummings JN, Reynolds SRM, et al. Acclimatization response of the pregnant ewe and fetal lamb to diminished ambient pressure. J Appl Physiol 1958; 13: 171–178.

    PubMed  CAS  Google Scholar 

  249. Kamitomo M, Alonso JG, Okai T, et al. Effects of longterm high-altitude hypoxemia on ovine fetal cardiac output and blood flow distribution. Am J Obstet Gynecol 1993; 169: 701–707.

    PubMed  CAS  Google Scholar 

  250. DeVore GR, Medearis AL, Platt LD. The effect of altitude on the umbilical artery Doppler resistance. J Ultrasound Med 1992; 11: 317–320.

    Google Scholar 

  251. Reshetnikova OS, Burton GJ, Milovanov AP, et al. Increased incidence of placental chorioangioma in high-altitude pregnancies: Hypobaric hypoxia as a possible etiologic factor. Am J Obstet Gynecol 1996; 174: 557–561.

    Article  PubMed  CAS  Google Scholar 

  252. Ali KZM, Ali ME, Khalid MEM. High altitude and spontaneous preterm birth. Int J Gynaecol Obstet 1996; 54: 11–5.

    Article  PubMed  CAS  Google Scholar 

  253. Vatnick I, Schoknecht PA, Darrigrand R, et al. Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J Dev Physiol 1991; 15: 351–356.

    PubMed  CAS  Google Scholar 

  254. Penninga L, Longo LD. Unpublished data.

    Google Scholar 

  255. Reshetnikova OS, Burton GJ, Milovanov AP. Effects of hypobaric hypoxia on the fetoplacental unit: the morpho-metric diffusing capacity of the villous membrane at high altitude. Am J Obstet Gynecol 1994; 171: 1560–1565.

    PubMed  CAS  Google Scholar 

  256. Burton GJ, Reshetnikova OS, Milovanov AP, et al. Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. Placenta 1996; 17: 49–55.

    Article  PubMed  CAS  Google Scholar 

  257. Jackson MR, Mayhew TM, Haas JD. Morphometric studies on villi in human term placentae and the effects of altitude, ethnic grouping and sex of newborn. Placenta 1987; 8: 487–495.

    Article  PubMed  CAS  Google Scholar 

  258. Krebs C, Longo LD, Leiser R. Term ovine placental vasculature: comparison of sea level and high altitude conditions by corrosion cast and histomorphometry. Placenta 1997; 18: 43–51.

    Article  PubMed  CAS  Google Scholar 

  259. Ali KZ, Burton GJ, Morad N, et al. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude? Placenta 1996; 17: 677–682.

    Article  PubMed  CAS  Google Scholar 

  260. Lee R, Mayhew TM. Star volumes of villi and intervillous pores in placentae from low and high altitude pregnancies. J Anat 1995; 186: 349–355.

    PubMed  Google Scholar 

  261. Jackson MR, Mayhew TM, Haas JD. The volumetric composition of human term placentae: altitudinal, ethnic and sex differences in Bolivia. J Anat 1987; 152: 173–187.

    PubMed  CAS  Google Scholar 

  262. Jackson MR, Mayhew TM, Haas JD. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. II. An increase in the degree of peripheralization of fetal capillaries. Placenta 1988; 9: 9–18.

    Article  PubMed  CAS  Google Scholar 

  263. Jackson MR, Mayhew TM, Haas JD. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. Placenta 1988; 9: 1–8.

    Article  PubMed  CAS  Google Scholar 

  264. Jackson MR, Joy CF, Mayhew TM, et al. Stereological studies on the true thickness of the villous membrane in human term placentae: a study of placentae from high-altitude pregnancies. Placenta 1985; 6: 249–258.

    Article  PubMed  CAS  Google Scholar 

  265. Mayhew TM. Patterns of villous and intervillous space growth in human placentas from normal and abnormal pregnancies. Eur J Obstet Gynecol Reprod Biol 1996; 68: 75–82.

    Article  PubMed  CAS  Google Scholar 

  266. Howard RC, Bruns PD, Lichty JA. Studies on babies born at high altitudes. III. Arterial oxygen saturation and hematocrit values at birth. Am J Dis Child 1957; 93: 674–678.

    CAS  Google Scholar 

  267. Sobrevilla LA, Cassinelli MT, Carcelen A, et al. Human fetal and maternal oxygen tension and acid base status during delivery at high altitude. Am J Obstet Gynecol 1971; 111: 1111–1118.

    PubMed  CAS  Google Scholar 

  268. Parer JT. Effects of hypoxia on the mother and fetus with emphasis on maternal air transport. Am J Obstet Gynecol 1982; 142: 957–961.

    PubMed  CAS  Google Scholar 

  269. Blechner JN, Cotter JR, Hinkley CM, et al. Observations on pregnancy at high altitude. II. Transplacental pressure differences of oxygen and carbon dioxide. Am J Obstet Gynecol 1968; 102: 794–801.

    PubMed  CAS  Google Scholar 

  270. Makowski EL, Battaglia FC, Meschia G, et al. Effect of maternal exposure to high altitude upon fetal oxygenation. Am J Obstet Gynecol 1968; 100: 852–861.

    PubMed  CAS  Google Scholar 

  271. Penninga L, Longo LD. Unpublished data.

    Google Scholar 

  272. McCullough RE, Reeves JT. Fetal growth retardation and increased infant mortality at high altitude. Arch Environ Health 1977; 32: 36–39.

    PubMed  CAS  Google Scholar 

  273. Little BB, Snell LM, Palmore MK, et al. Cocaine use in pregnant women in a large public hospital. Am J Perinatol 1988: 4: 206–207.

    Article  Google Scholar 

  274. Neerhof MG, MacGregor SN, Retzky SS, et al. Cocaine abuse during pregnancy: peripartum prevalence and perinatal outcome. Am J Obstet Gynecol 1989; 161: 633–638.

    PubMed  CAS  Google Scholar 

  275. Glantz JC, Woods JR Jr. Cocaine, heroine, and phencyclidine: obstetric perspectives. Clin Obstet Gynecol 1993; 36: 279–301.

    Article  PubMed  CAS  Google Scholar 

  276. Gilbert WM, Lafferty CM, Benirschke K, et al. Lack of specific placental abnormality associated with cocaine use. Am J Obstet Gynecol 1990; 163: 998–999.

    PubMed  CAS  Google Scholar 

  277. Malek A, Ivy D, Blann E, Mattison DR. Impact of cocaine on human placental function using in vitro perfusion system. J Pharmacol Toxicol Methods 1995; 33: 213–219.

    Article  PubMed  CAS  Google Scholar 

  278. Plessinger MA, Woods JR Jr. Maternal, placental and fetal pathophysiology of cocaine exposure during pregnancy. Clin Obstet Gynecol 1993; 36: 267–278.

    Article  PubMed  CAS  Google Scholar 

  279. Dolkart LA, Plessinger MA, Woods JR Jr. Effect of alpha-1 receptor blockade upon maternal and fetal cardiovascular responses to cocaine. Obstet Gynecol 1990; 75: 745–751.

    PubMed  CAS  Google Scholar 

  280. Ahluwalia BS, Clark JFJ, Westney LS, et al. Amniotic fluid and umbilical artery levels of sex hormones and prostaglandins in human cocaine users. Reprod Toxicol 1992; 6: 57–62.

    Article  PubMed  CAS  Google Scholar 

  281. Monga M, Chmielowiec S, Andres RL, et al. Cocaine alters placental production of thromboxane and prostacyclin. Am J Obstet Gynecol 1994; 171: 965–969.

    PubMed  CAS  Google Scholar 

  282. Cejtin HE, Parsons MT, Wilson L Jr. Cocaine use and its effect upon umbilical artery prostacyclin production. Prostaglandins 1990; 40: 249–257.

    Article  PubMed  CAS  Google Scholar 

  283. Bureau MA, Monette J, Shapcott D, et al. Carboxyhemoglobin concentration in fetal cord blood and in blood of mothers who smoked during labor. Pediatrics 1982; 69: 371–373.

    PubMed  CAS  Google Scholar 

  284. Longo LD, Hill EP. Carbon monoxide uptake and elimination in fetal and maternal sheep. Am J Physiol 1977; 232: H324 - H330.

    PubMed  CAS  Google Scholar 

  285. Longo LD. The biological effects of carbon monoxide on the pregnant woman, fetus and newborn infant. Am J Obstet Gynecol 1977; 129: 69–103.

    PubMed  CAS  Google Scholar 

  286. Bureau MA, Shapcott D, Berthiaume Y, et al. Maternal cigarette smoking and fetal oxygen transport: a study of P50, 2,3-diphosphoglycerate, total hemoglobin, hemat-ocrit and type F hemoglobin in fetal blood. Pediatrics 1983; 72: 22–26.

    PubMed  CAS  Google Scholar 

  287. Longo LD. Carbon monoxide: effects on oxygenation of the fetus in utero. Science 1977; 194: 523–525.

    Article  Google Scholar 

  288. Longo LD. Carbon monoxide in the pregnant mother and fetus and its exchange across the placenta. Ann NY Acad Sci 1970; 174: 313–341.

    Article  CAS  Google Scholar 

  289. Lehtovirta P, Forss M. Acute effects of smoking on inter-vinous blood flow of the placenta. Br J Obstet Gynaecol 1978; 85: 729–731.

    Article  PubMed  CAS  Google Scholar 

  290. Quigley ME, Sheehan KL, Wilkes MM, et al. Effects of maternal smoking on circulating catecholamine levels and fetal heart rates. Am J Obstet Gynecol 1979; 133: 685–690.

    PubMed  CAS  Google Scholar 

  291. Sindberg Eriksen P, Marsal K. Acute effects of maternal smoking on fetal blood flow. Acta Obstet Gynecol Scand 1984; 63: 391–397.

    Article  Google Scholar 

  292. Lindblad A, Marsal K. Influence of nicotine chewing gum on fetal blood flow. J Perinat Med 1987; 15: 13–19.

    Article  PubMed  CAS  Google Scholar 

  293. Brown HL, Miller JM, Khawli O, et al. Premature placental calcification in maternal cigarette smokers. Obstet Gynecol 1988; 71: 914–917.

    PubMed  CAS  Google Scholar 

  294. Asmussen I. Ultrastructure of the human placenta at term. Observations on placentas from newborn children of smoking and non-smoking mothers. Acta Obstet Gynecol Scand 1977; 56: 119–126.

    Article  PubMed  CAS  Google Scholar 

  295. Harrison MR. Fetal surgery. Am J Obstet Gynecol 1996; 174: 1255–1264.

    Article  PubMed  CAS  Google Scholar 

  296. De Lia JE, Cruikshank DP, Keye WR Jr. Fetoscopic neodymium: Yag laser occlusion of placental vessels in severe twin-twin transfusion syndrome. Obstet Gynecol 1990; 75: 1046–1053.

    PubMed  Google Scholar 

  297. Longaker MT, Golbus MS, Filly RA, et al. Maternal outcome after open fetal surgery. A review of the first 17 human cases. JAMA 1991; 265: 737–741.

    Article  PubMed  CAS  Google Scholar 

  298. Estes JM, MacGillivray TE, Hedrick MH, et al. Fetoscopic surgery for the treatment of congenital anomalies. J Pediatr Surg 1992; 27: 950–954.

    Article  PubMed  CAS  Google Scholar 

  299. Sabik JF, Assad RS, Hanley FL. Halothane as an anesthetic for fetal surgery. J Pediatr Surg 1993; 28: 542–547.

    Article  PubMed  CAS  Google Scholar 

  300. Cheek DBC, Hughes SC, Dailey PA, et al. Effect of halothane on regional cerebral blood flow and cerebral metabolic oxygen consumption in the fetal lamb in utero. Anesthesiology 1987; 67: 361–366.

    Article  PubMed  CAS  Google Scholar 

  301. Skarsgard ED, Bealer JF, Meuli M, et al. Fetal endoscopic (“fetendo”) surgery: the relationship between insufflating pressure and the fetoplacental circulation. J Pediatr Surg 1995; 30: 1165–1168.

    Article  PubMed  CAS  Google Scholar 

  302. Tabor BL, Maier JA. Polyhydramnios and elevated intrauternine pressure during amnioinfusion. Am J Obstet Gynecol 19871; 156: 130–131.

    CAS  Google Scholar 

  303. Turley K, Vlahakes GJ, Harrison MR, et al. Intrauterine cardiothoracic surgery: the fetal lamb model. Ann Thorac Surg 1982; 34: 422–426.

    Article  PubMed  CAS  Google Scholar 

  304. Carpenter RJ Jr, Strasburger JF, Garson A Jr, et al. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol 1986; 8: 1434–1436.

    Article  PubMed  Google Scholar 

  305. Maxwell D, Allan L, Tynan MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J 1991; 65: 256–258.

    Article  PubMed  CAS  Google Scholar 

  306. Hawkins JA, Paape KL, Adkins TP, et al. Extracorporeal circulation in the fetal lamb. Effects of hypothermia and perfusion rate. J Cardiovasc Surg 1991; 32: 295–300.

    CAS  Google Scholar 

  307. Hawkins JA, Clark SM, Shaddy RE, et al. Fetal cardiac bypass: improved placental function with moderately high flow rates. Ann Thorac Surg 1994; 57: 293–297.

    Article  PubMed  CAS  Google Scholar 

  308. Bradley SM, Hanley FL, Duncan BW, et al. Fetal cardiac bypass alters regional blood flows, arterial blood gases and hemodynamics in sheep. Am J Physiol 1992; 263: H919 - H928.

    PubMed  CAS  Google Scholar 

  309. Sabik JF, Heinemann MK, Assad RS, et al. High-dose steroids prevent placental dysfunction after fetal cardiac bypass. J Thorac Cardiovasc Surg 1994; 107: 116–125.

    PubMed  CAS  Google Scholar 

  310. Fenton KN, Heinemann MK, Hanley FI. Exclusion of the placenta during fetal cardiac bypass augments systemic flow and provides important information about the mechanism of placental injury. J Thorac Cardiovasc Surg 1993; 105: 502–512.

    PubMed  CAS  Google Scholar 

  311. Callaghan JC, Angeles JD, Boracchia B, et al. Studies in the development of an artificial placenta. The possible use of long-term extracorporeal circulation for respiratory distress of the newborn. Circulation 1963; 27: 686–690.

    Article  Google Scholar 

  312. Zapol WM, Kolobow T, Pierce JE, et al. Artificial placenta: two days of total extrauterine support of the isolated premature lamb fetus. Science 1969; 166: 617–618.

    Article  PubMed  CAS  Google Scholar 

  313. Kuwabara Y, Okai T, Kozuma S, et al. Artificial placenta: long-term extrauterine incubation of isolated goat fetuses. Artif Organs 1989; 13: 527–531.

    Article  PubMed  CAS  Google Scholar 

  314. Unno N, Kuwabara Y, Shinozuka N, et al. Development of artificial placenta: oxygen metabolism of isolated goat fetuses with umbilical arteriovenous extracorporeal membrane oxygenation. Fetal Diagn Ther 1990; 5: 189–195.

    Article  PubMed  CAS  Google Scholar 

  315. Unno N, Kuwabara Y, Okai T, et al. Development of an artificial placenta: survival of isolated goat fetuses for three weeks with umbilical arteriovenous extracorporeal membrane oxygenation. Artif Organs 1993; 17: 996–1003.

    Article  PubMed  CAS  Google Scholar 

  316. Chamberlain G. An artificial placenta: the development of an extracorporeal system for maintenance of immature infants with respiratory problems. Am J Obstet Gynecol 1968; 100: 615–626.

    PubMed  CAS  Google Scholar 

  317. Westin B, Nyberg R, Enhorning G. Technique for perfusion of the previable human fetus. Acta Paediatr 1958; 47: 339–349.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rothstein, R.W., Longo, L.D. (1998). Respiration in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics