Advertisement

Essential Fatty Acids and Prostaglandins in Pregnancy

  • Paul L. OgburnJr.

Abstract

Essential fatty acids (EFAs) are a subgroup of polyunsaturated fatty acids (PUFA) that are required constituents of the diet; otherwise, illness and eventually death will occur. All living cells contain these lipids, especially in the phospholipids of membranes. EFAs serve as more than building blocks for tissue; they are also the obligate precursors for prostaglandins and related eicosanoids, which are essential for human and other animal metabolism.

Keywords

Oleic Acid Arachidonic Acid Essential Fatty Acid Magnesium Sulfate Preterm Labor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pace-Asciak CR. The eicosanoids. In: Kalant H, Roschlau WHE, eds. Principles of medical pharmacology. 5th ed. Philadelphia: B.C. Decker, 1989: 302–310.Google Scholar
  2. 2.
    Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929; 82: 345–367.Google Scholar
  3. 3.
    Burr GO, Burr MM. On the nature and role of the fatty acids essential in nutrition. J Biol Chem 1930; 86: 587–621.Google Scholar
  4. 4.
    Gorman RR, Marcus AJ. Prostaglandins and cardiovascular disease. Current Concepts Series. Kalamazoo: Upjohn, 1981.Google Scholar
  5. 5.
    Raux JF, Yoshioka T. Lipid metabolism in the fetus during development. Clin Obstet Gynecol 1970; 13: 595–620.CrossRefGoogle Scholar
  6. 6.
    Crawford MA, Hassam AG, Stevens PA. Essential fatty acid requirements in pregnancy and lactation with special reference to brain development. Prog Lipid Res 1981; 20: 31–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Kurzrok R, Leib CC. Biochemical studies of human semen; action of semen on human uterus. Proc Soc Exp Biol Med 1930; 28: 268–272.Google Scholar
  8. 8.
    Battez G, Boulet L. Action de l’extrait de prostate humaine sur la vessie et sur la pression arterielle. C R Soc Biol Paris 1913; 74: 8–9.Google Scholar
  9. 9.
    Von Euler US. Zur Kenntnis der pharmakologischen Wirkungren von Nativsekreten und Extrakten mannlicher accessoricher Geschlectlichsdrusen. Arch Exp Pathol Pharmacol 1934; 175: 78–84.CrossRefGoogle Scholar
  10. 10.
    Von Euler US. On specific vasodilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin). J Physiol (Lond) 1936; 88: 213–234.Google Scholar
  11. 11.
    Goldblatt MW. A depressor substance in seminal fluid. J Soc Chem Ind (Lond) 1993; 52: 1056–1057.Google Scholar
  12. 12.
    Goldblatt MW. Properties of human seminal plasma. J Physiol (Lond) 1935; 84: 208–218.Google Scholar
  13. 13.
    Bergstrom S, Sjovall J. The isolation of prostaglandin F from sheep prostate glands. Acta Chem Scand 1960; 14: 1693–1700.CrossRefGoogle Scholar
  14. 14.
    Bergstrom S, Sjovall J. The isolation of prostaglandin E from sheep prostate glands. Acta Chem Scand 1960; 14: 1701–1705.Google Scholar
  15. 15.
    Bergstrom S, Ryhage R, Samuelsson B, et al. Prostaglandins and related factors. 15. The structures of prostaglandin E, Fia, F,p. J Biol Chem 1963; 238: 3555–3564.Google Scholar
  16. 16.
    Weinheimier AJ, Spraggins RL. The occurrence of two new prostaglandin derivatives (15-epi-PGA2) in the gorgonian Plexaura homomalla. Tet Lett 1969; 10: 5185–5188.CrossRefGoogle Scholar
  17. 17.
    Corey EJ. Studies on the total synthesis of prostaglandins. Ann NY Acad Sci 1971; 180: 24–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Ogburn PL Jr, Brenner WE. The physiologic actions and effects of prostaglandins. Kalamazoo: Upjohn, 1981.Google Scholar
  19. 19.
    Karim SMM, Filshie GM. Therapeutic abortion using prostaglandin F. Lancet 1970; 1: 157–159.PubMedCrossRefGoogle Scholar
  20. 20.
    Roth-Brandel U, Bygdeman M, Wiqvist N, et al. Prostaglandins for induction of therapeutic abortion. Lancet 1970; 1: 190–191.PubMedCrossRefGoogle Scholar
  21. 21.
    Karim S. Action of prostaglandin in the pregnant woman. Ann NY Acad Sci 1971; 180: 483–498.PubMedCrossRefGoogle Scholar
  22. 22.
    Wiqvist N, Beguin F, Bygdeman M, et al. Recent aspects on systemic administration of prostaglandin. In: Southern EM, ed. The prostaglandins: clinical applications in human reproduction. Mount Kisco, NY: Futura, 1972: 295–306.Google Scholar
  23. 23.
    Samuelsson B, Hamberg M, Sweeley CC. Quantitative gas chromatography of prostaglandin E, at the nanogram level: use of deuterated carrier and multiple ion analyzer. Anat Biochem 1970; 38: 301–304.CrossRefGoogle Scholar
  24. 24.
    Thompson CJ, Los M, Horton EW. The separation, identification, and estimation of prostaglandins in nanogram quantities by combined gas chromatography-mass spectrometry. Life Sci 1970; 9: 983–988.CrossRefGoogle Scholar
  25. 25.
    Granstrom E. Radioimmunoassay of prostaglandins. Prostaglandins 1978; 15: 3–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Granstrom E, Kindahl H. Radioimmunoassay for prostaglandin metabolites. Adv Prostaglandin Thromboxane Res 1976; 1: 81–92.PubMedGoogle Scholar
  27. 27.
    Dray F, Chorbonnel B, Maclouf J. Primary prostaglandins in human peripheral plasma by radioimmunoassay. Adv Prostaglandin Thromboxane Res 1976; 1: 93–97.PubMedGoogle Scholar
  28. 28.
    Van Dorp DA, Beerthuis RK, Nugteren DH, et al. The biosynthesis of prostaglandins. Biochem Biophys Acta 1964; 90: 204–297.CrossRefGoogle Scholar
  29. 29.
    Van Dorp DA, Beerthuis RK, Nugteren DH, et al. Enzymatic conversion of all-cis-polyunsaturated fatty acids into prostaglandins. Nature 1964; 203: 839–841.CrossRefGoogle Scholar
  30. 30.
    Bergstrom S, Danielsson H, Samuelsson B. The enzymatic formation of prostaglandin E1 from arachidonic acid. 32. Prostaglandins and related factors. Biochem Biophys Acta 1964; 90: 207–210.CrossRefGoogle Scholar
  31. 31.
    Anggard E, Samuelsson B. Biosynthesis of prostaglandins from arachidonic acid in guinea-pig lung. 38. Prostaglandins and related factors. J Biol Chem 1965; 240: 3518–3521.PubMedGoogle Scholar
  32. 32.
    Kupiecki FP. Conversion of homo-gamma-linolenic acid to prostaglandin Fia by ovine and bovine seminal vesicle extracts. Life Sci 1965; 4: 1811–1815.PubMedCrossRefGoogle Scholar
  33. 33.
    Bergstrom S. Prostaglandins from bedside observation to a family of drugs. Prog Lipid Res 1981; 20: 7–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Struijk CB, Beerthuis RK, Pabon HJJ, et al. Specificity in the enzymic conversion of polyunsaturated fatty acids into prostaglandin. Red Tray Chim Pays Bas Belg 1966; 85: 1233–1250.CrossRefGoogle Scholar
  35. 35.
    Flower RJ, Blackwell GJ. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol 1976; 25: 285–291.PubMedCrossRefGoogle Scholar
  36. 36.
    Wallach DP. The enzymatic conversion of arachidonic acid to prostaglandin E2 with acetone powder preparations of bovine seminal vesicles. Life Sci 1965; 4: 361–364.PubMedCrossRefGoogle Scholar
  37. 37.
    Wallach DP, Daniels EG. Properties of a novel preparation of prostaglandin synthetase from sheep seminal vesicles. Biochim Biophys Acta 1971; 231: 445457.Google Scholar
  38. 38.
    Van Dorp DA. Aspects of the biosynthesis of prostaglandins. Prog Biochem Pharmacol 1967; 3: 71–82.Google Scholar
  39. 39.
    Samuelsson B, Hambert M. Role of endoperoxides in the biosynthesis and action of prostaglandins. In: Robinson HJ, Vane JR, eds. Prostaglandin synthetase inhibitors. New York: Raven Press, 1974: 107–119.Google Scholar
  40. 40.
    Nugteren DH, Hazelhof E. Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim Biophys Acta 1973; 326: 448–461.PubMedCrossRefGoogle Scholar
  41. 41.
    Hamberg M, Samuelsson B. Prostaglandin endoperoxides: novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 1974; 71: 3400–3404.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Dorp DA. The biosynthesis of prostaglandins. Mem Soc Endocr 1966; 14: 39–47.Google Scholar
  43. 43.
    Hamberg M, Samuelsson B. On the mechanism of the biosynthesis of prostaglandins E1 and F. J Biol Chem 1967; 242: 5336–5443.PubMedGoogle Scholar
  44. 44.
    Nugteren DH, Van Dorp DA. The participation of molecular oxygen in the biosynthesis of prostaglandins. Biochim Biophys Acta 1965; 98: 654–656.PubMedCrossRefGoogle Scholar
  45. 45.
    Nugteren DH, Beerthuis RK, Van Dorp DA. The enzymic conversion of all-cis-8,11,14-eicosatrienoic acid into prostaglandin E,. Red Tray Chim Pays Bas Belg 1966; 85: 405–419.CrossRefGoogle Scholar
  46. 46.
    Ryhage R, Samuelsson B. The origin of oxygen incorporated during the biosynthesis of prostaglandin E1. Biochem Biophys Res Commun 1965; 19: 279–282.PubMedCrossRefGoogle Scholar
  47. 47.
    Samuelsson B. On the incorporation of oxygen in the conversion of 8,11,14-eicosatrienoic acid to prostaglandin E,. J Am Chem Soc 1965; 87: 3011–3013.PubMedCrossRefGoogle Scholar
  48. 48.
    Klenberg D, Samuelsson B. The biosynthesis of prostaglandin E1 studied with specifically 3H-labelled 8,11,14-eicosatrienoic acids. Acta Chem Scand 1965; 19: 534–535.PubMedCrossRefGoogle Scholar
  49. 49.
    Hamberg M, Samuelsson B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 1973; 70: 899–903.PubMedCrossRefGoogle Scholar
  50. 50.
    Hamberg M, Samuelsson B. On the metabolism of prostaglandin E1 and E2 in man. J Biol Chem 1971; 246: 6713–6721.PubMedGoogle Scholar
  51. 51.
    Granstrom E. On the metabolism of prostaglandin F in female subjects: structures of two metabolites in blood. Eur J Biochem 1972; 27: 462–469.PubMedCrossRefGoogle Scholar
  52. 52.
    Nugteren DH. The determination of prostaglandin metabolites in human urine. J Biol Chem 1975; 250: 2808 2812.Google Scholar
  53. 53.
    Smith JB, Willis AL. Aspirin selectively inhibits prostaglandin production in human platelets. Nature 1971; 231: 235–237.Google Scholar
  54. 54.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 1971; 231: 232–235.Google Scholar
  55. 55.
    Rome LH, Lands WEM. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc Natl Acad Sci USA 1975; 72: 4863–4865.PubMedCrossRefGoogle Scholar
  56. 56.
    Ramberg M, Svensson J, Samuelsson B. Prostaglandin endoperoxides: new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 1975; 71: 3824–3828.CrossRefGoogle Scholar
  57. 57.
    Hinman JW, Weeks JR. The prostaglandins: biology and biochemistry. In: Southern EM, ed. Prostaglandins: clinical applications in human reproduction (Brook Lodge Symposium on the Prostaglandins, Augusta, MI, 1972 ). Mount Kisco, NY: Futura, 1972: 31–36.Google Scholar
  58. 58.
    Hamberg M, Svensson J, Samuelsson B. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 1975; 72: 2994–2998.PubMedCrossRefGoogle Scholar
  59. 59.
    Gryglewski RJ, Bunting S, Moncada S, et al. Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandins X) which they make from prostaglandin endoperoxides. Prostaglandins 1976; 12: 685713.Google Scholar
  60. 60.
    Moncada S, Gryglewski RJ, Bunting S, et al. An enzyme isolated from arteries transforms prostaglandins endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976; 263: 663–665.PubMedCrossRefGoogle Scholar
  61. 61.
    Kuehl FA, Humes JL. Direct evidence for a prostaglandin receptor and its application to prostaglandin measurements (rat-adipocytes-antagonists-analogues-mouse ovary assay). Proc Natl Acad Sci USA 1972; 69: 480484.Google Scholar
  62. 62.
    Wakeling AE, Kirton KT. Prostaglandin receptors in the hamster uterus during the estrous cycle. Prostaglandins 1973; 4: 1–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Powell WS, Hammarstrom S, Samuelsson B. Prostaglandin F receptor in ovine corpora lutea. Eur J Biochem 1974; 41: 103–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Powell WS, Hammarstrom S, Samuelsson B. Occurrence and properties of a prostaglandin F, receptor in bovine corpora lutea. Eur J Biochem 1975; 56: 73–77.PubMedCrossRefGoogle Scholar
  65. 65.
    Powell WS, Hammarstrom S, Samuelsson B, et al. Prostaglandin F receptor in human corpora lutea. Lancet 1974; 1: 1120 (letter).Google Scholar
  66. 66.
    Kuehl FA Jr. Prostaglandins, cyclic nucleotides and cell function. Prostaglandins 1974; 5: 325–340.PubMedCrossRefGoogle Scholar
  67. 67.
    Dunham EW, Haddox MK, Goldberg ND. Alteration of vein cyclic 3’,5’ nucleotide concentrations during changes in contractility. Proc Natl Acad Sci USA 1974; 71: 815–819.PubMedCrossRefGoogle Scholar
  68. 68.
    Elattar TMA. Prostaglandins: physiology, biochemistry, pharmacology, and clinical applications. J Oral Pathol 1978;7: 175–207, 239–282.Google Scholar
  69. 69.
    Bunting S, Gryglewski RJ, Moncada S, et al. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 1976; 12: 897–913.PubMedCrossRefGoogle Scholar
  70. 70.
    Hammarstrom S, Murphy RC, Samuelsson B, et al. Structure of leukotriene C: identification of the amino acid part. Biochem Biophys Res Commun 1979; 28: 1266–1272.CrossRefGoogle Scholar
  71. 71.
    Samuelsson B. Leukotrienes: a new group of biologically active compounds. Presented at the Golden Jubilee International Congress on Essential Fatty Acids and Prostaglandins. Minneapolis, 1980.CrossRefGoogle Scholar
  72. 72.
    Morris HR, Taylor GW, Piper PJ, et al. Slow-reacting substance of anaphylaxis: studies on purification and characterization. Agents Actions 1979; 6 (suppl): 27–36.Google Scholar
  73. 73.
    Borgeat P, Samuelsson B. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes: formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 1979; 245: 2643–2646.Google Scholar
  74. 74.
    Hecker M, Foegh ML, Ramwell PW. The eicosanoids: prostaglandins, thromboxanes, leukotrienes, and related compounds. In: Katzung BG, ed. Basic and clinical pharmacology, Norwalk, CT: Appleton & Lange, 1989: 229–241.Google Scholar
  75. 75.
    Embrey MP. The prostaglandins in human reproduction: clinical applications. Edinburgh: Churchill Livingstone, 1975.Google Scholar
  76. 76.
    Karim SMM, ed. Advances in prostaglandin research: prostaglandins and reproduction. Baltimore: University Park Press, 1975.Google Scholar
  77. 77.
    Arrata WS, Tsai AY. Prostaglandins in reproduction. J Reprod Med 1978; 20: 84–89.PubMedGoogle Scholar
  78. 78.
    Bygdeman M, Samuelsson B. Analyses of prostaglandins in human semen: prostaglandins and related factors. Clin Chim Acta 1966; 13: 465–474.PubMedCrossRefGoogle Scholar
  79. 79.
    Eliasson R. Studies on prostaglandin: occurrence, formation, and biological actions. Acta Physiol Scand 1959; 46 (suppl 158): 1–73.Google Scholar
  80. 80.
    Hawkins DF. Relevance of prostaglandin to problems of human subfertility. In: Ramwell PW, Shaw JE, eds. Prostaglandins symposium of Worchester Foundation for Experimental Biology. New York: Interscience, 1968.Google Scholar
  81. 81.
    Bygdeman M, Fredricsson B, Svanborg K, et al. The relation between fertility and prostaglandin content of seminal fluid in man. Fertil Steril 1970; 21: 622–629.PubMedGoogle Scholar
  82. 82.
    Eskin BA, Azarbal S. Effect of PGF upon periovular cervical mucus. Adv Biosci 1973; 9: 731–735.PubMedGoogle Scholar
  83. 83.
    Labhsetwar AP. Prostaglandins and studies in laboratory animals. In: Karim SMM, ed. Advances in prostaglandin research: prostaglandins and reproduction. Baltimore: University Park Press, 1975: 255–256.Google Scholar
  84. 84.
    Sandberg F, Ingleman-Sundberg A, Ryden G. The effect of prostaglandin E1 on the human uterus and the fallopian tubes in vitro. Acta Obstet Gynecol Scand 1963; 42: 269278.Google Scholar
  85. 85.
    Sandberg F, Ingleman-Sundberg A, Ryden G. The effect of prostaglandins E2 and E3 on the human uterus and fallopian tubes in vitro. Acta Obstet Gynecol Scand 1964; 43: 95–102.PubMedCrossRefGoogle Scholar
  86. 86.
    Sandberg F, Ingleman-Sundberg A, Ryden F. The effect of prostaglandin F, F, F, and F on the human uterus and the fallopian tubes in vitro. Acta Obstet Gynecol Scand 1966; 44: 585–594.CrossRefGoogle Scholar
  87. 87.
    Coutinho EM. Tubal and uterine motility. In: Diczfalusy E, Borell U, eds. Control of human fertility. Nobel Symposium 15. Stockholm: Almqvist & Wiksell; New York: Wiley, 1971: 97–115.Google Scholar
  88. 88.
    Spilman CH, Harper MJ. Effects of prostaglandins on oviduct motility and egg transport. Gynecol Invest 1975; 6: 186–205.PubMedCrossRefGoogle Scholar
  89. 89.
    Horton EW. Hypothesis on physiological roles of prostaglandins. Physiol Rev 1969; 49: 122–161.PubMedGoogle Scholar
  90. 90.
    Pharriss BB, Behrman HR. Gonadal function. In: Ramwell PW, ed. The prostaglandins. New York: Plenum Press, 1973: 347–363.CrossRefGoogle Scholar
  91. 91.
    Armstrong DT, Grinwish DL. Blockade of spontaneous and LH-induced ovulation in rats by indomethacin, an inhibitor of prostaglandin biosynthesis. Prostaglandins 1972; 1: 21–28.PubMedCrossRefGoogle Scholar
  92. 92.
    Coutinho EM. Ovarian contractility and ovulation. In: Edwards RG, ed. Research in reproduction, vol. 6. London: International Planned Parenthood Federation, 1974: 3–4.Google Scholar
  93. 93.
    Coutinho EM, Maia HS. The contractile response of the human uterus, fallopian tubes, and ovary to prostaglandins in vivo. Fertil Steril 1971; 22: 539–543.PubMedGoogle Scholar
  94. 94.
    Sato T, Taya K, Jyujyo T, et al. The stimulatory effect of prostaglandins on luteinizing hormone. release. Am J Obstet Gynecol 1974; 118: 875–876.PubMedGoogle Scholar
  95. 95.
    LeMaire WJ, Leidner R, Marsh SM. Pre-and postovulatory changes in the concentration of prostaglandins in rat graafian follicles. Prostaglandins 1975; 9: 221–229.PubMedCrossRefGoogle Scholar
  96. 96.
    Sato T, Jyujo T, Hirono M, et al. Effects of indomethacin, an inhibitor of prostaglandin synthesis, on the hypothalamic pituitary system in rats. J Endocrinol 1975; 64: 395–396.PubMedCrossRefGoogle Scholar
  97. 97.
    Pharriss B. Prostaglandin induction of luteolysis. Ann NY Acad Sci 1971; 180: 436–444.PubMedCrossRefGoogle Scholar
  98. 98.
    Kirton KT, Pharriss BB, Forbes AD. Luteolytic effects of prostaglandin F in primates. Proc Soc Exp Biol Med 1970; 133: 314–316.PubMedGoogle Scholar
  99. 99.
    McCracken JA, Baird DT, Goding JR. Factors affecting the secretion of steroids from the transplantal ovary in the sheep. Recent Prog Horm Res 1971; 27: 537–582.PubMedGoogle Scholar
  100. 100.
    Arrata WSM, Chatterton RT. Effect of prostaglandin F on the luteal phase of the cycle in nonpregnant women. Am J Obstet Gynecol 1974; 120: 954–959.PubMedGoogle Scholar
  101. 101.
    Kirton KT. Prostaglandins and reproduction of subhuman primates. In: Karim SMM, ed. The prostaglandins: progress in research. New York: Wiley-Interscience, 1972: 47–70.Google Scholar
  102. 102.
    Downie J, Poyser NL, Wunderlich M. Levels of prostaglandins in human endometrium during the normal menstrual cycle. J Physiol (Lond) 1974; 236: 465–472.Google Scholar
  103. 103.
    Sakaena SK, Lau IF. Effect of exogenous estradiol and progesterone on the uterine tissue levels of prostaglandin F in ovariectomized mice. Prostaglandins 1973; 3: 317322.Google Scholar
  104. 104.
    Lundstrom V, Bygdeman M. Prostaglandin F and E2 in primary dysmenorrhea. Presented at the Fourth International Prostaglandin Conference, Washington, DC, 1979.Google Scholar
  105. 105.
    Lundstrom V, Green K, Wiqvist N. Prostaglandins, indomethacin and dysmenorrhea. Prostaglandins 1976; 11: 893–907.PubMedCrossRefGoogle Scholar
  106. 106.
    Rickles VR. The prostaglandins. Biol Rev 1967; 42: 614652.Google Scholar
  107. 107.
    Willman EA, Collins WP, Clayton SG. Studies in the involvement of prostaglandins in uterine symptomatology and pathology. Br J Obstet Gynaecol 1976; 83: 337–341.PubMedCrossRefGoogle Scholar
  108. 108.
    Halbert DR, Demers LM, Jones DE. Dysmenorrhea and prostaglandins. Obstet Gynecol Sury 1976; 31: 77–81.CrossRefGoogle Scholar
  109. 109.
    McNatty KP, Henderson KM, Sawers RS. Effects of prostaglandin F and E2 on the production of progesterone by human granulosa cells in tissue culture. J Endocrinol 1975; 67: 231–240.PubMedCrossRefGoogle Scholar
  110. 110.
    Karim SM. Appearance of prostaglandin F in human blood during labor. Br Med J 1968; 4: 618–621.PubMedCrossRefGoogle Scholar
  111. 111.
    Karim SM. Identification of prostaglandins in human amniotic fluid. Br J Obstet Gynaecol 1966; 73: 903–908.CrossRefGoogle Scholar
  112. 112.
    Liggins GC, Grieves S. Possible role for prostaglandin F in parturition in sheep. Nature 1971; 232: 626–631.CrossRefGoogle Scholar
  113. 113.
    Hillier K, Calder AA, Embrey MP. Concentrations of prostaglandin F in amniotic fluid and plasma in spontaneous and induced labours. Br J Obstet Gynaecol 1974; 81: 257–263.CrossRefGoogle Scholar
  114. 114.
    Keirse MJNC, Flint APC, Turbull AC. F prostaglandins in amniotic fluid during pregnancy and labour. Br J Obstet Gynaecol 1974; 81: 131–135.CrossRefGoogle Scholar
  115. 115.
    Sharma SC, Hibbard BM, Hamlett JD, et al. Prostaglandin F concentrations in peripheral blood during the first stage of normal labor. Br Med J 1973; 1: 709–711.PubMedCrossRefGoogle Scholar
  116. 116.
    Pritchard JA, MacDonald PC. Williams’ obstetrics. 15th ed. Norwalk, CT: Appleton-Century-Crofts, 1976:294297.Google Scholar
  117. 117.
    Schwarz BE, Schultz FM, MacDonald PC, et al. Initiation of human parturition. IV. Demonstration of phospholipase A2 in the lysosomes of human fetal membranes. Am J Obstet Gynecol 1976; 125: 1089–1092.PubMedGoogle Scholar
  118. 118.
    Schwarz BE, Schultz FM, MacDonald PC, et al. Initiation of human parturition. III. Fetal membranes content of prostaglandin E2 and F precursor. Obstet Gynecol 1975; 46: 564–568.PubMedGoogle Scholar
  119. 119.
    MacDonald PC, Porter JC, Schwarz GE, et al. Initiation of parturition in the human female. Semin Perinatol 1978; 2: 273–286.PubMedGoogle Scholar
  120. 120.
    Schultz FM, Schwarz BE, MacDonald PC, et al. Initiation of human parturition. II. Identification of phospholipase A2 in fetal chorioamnion and uterine decidua. Am J Obstet Gynecol 1975; 123: 650–653.PubMedGoogle Scholar
  121. 121.
    Okazaki T, Okita JR, MacDonald PC, et al. Initiation of human parturition. X. Substrate specificity of phospholipase A2 in human fetal membranes. Am J Obstet Gynecol 1978; 130: 432–438.PubMedGoogle Scholar
  122. 122.
    Kerise MJNC, Hicks BR, Mitchell MD, et al. Increase of the prostaglandin precursor, arachidonic acid, in amniotic fluid during spontaneous labor. Br J Obstet Gynaecol 1977; 84: 937–940.CrossRefGoogle Scholar
  123. 123.
    MacDonald PC, Schultz M, Duenhoelter JH, et al. Initiation of human parturition. I. Mechanisms of action of arachidonic acid. Obstet Gynecol 1974; 44: 629–636.PubMedGoogle Scholar
  124. 124.
    Knopp PH. Fuel metabolism in pregnancy. Contemp Obstet Gynecol 1978; 12: 83–90.Google Scholar
  125. 125.
    Hytten FE, Leitch I. The physiology of human pregnancy. 2nd ed. Oxford: Blackwell Scientific, 1971: 333–369.Google Scholar
  126. 126.
    Knopp RH, Saudek CD, Arky RA, et al. Two phases of adipose tissue metabolism in pregnancy: maternal adaptations for fetal growth. Endocrinology 1973; 92: 984–988.PubMedCrossRefGoogle Scholar
  127. 127.
    Ogburn PL, Brenner WE, Reitz RC, et al. Arachidonic acid and other free fatty acid changes during abortion by prostaglandin F2α.Am J Obstet Gynecol 1978; 130: 188–193.Google Scholar
  128. 128.
    Gudson JP, Burt RL. Effects of oxytocin on non-esterified fatty acids. Obstet Gynecol 1971; 38: 444–447.Google Scholar
  129. 129.
    Ogburn PL, Williams PP, Johnson SB, et al. Serum arachidonic acid levels in normal and preeclamptic pregnancies. Am J Obstet Gynecol 1984; 148: 5–9.PubMedGoogle Scholar
  130. 130.
    Schwartz K. Personal communication.Google Scholar
  131. 131.
    Holman RT, Johnson SB, Ogburn PL. Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci USA 1991; 88: 4835–4839.PubMedCrossRefGoogle Scholar
  132. 132.
    Kay H. Personal communication.Google Scholar
  133. 133.
    Pritchard JA, MacDonald PC, Gant NF. Williams’ obstetrics. Norwalk, CT: Appleton-Century-Crofts, 1985; 525–560.Google Scholar
  134. 134.
    Bussolino F, Bernadetto G, Massorbrio M, Camussi G. Maternal vascular prostacyclin activity in preeclamptia. Lancet 1980; 2: 702.PubMedCrossRefGoogle Scholar
  135. 135.
    Remuzzi G, Marchesi D, Zoja C, et al. Reduced umbilical and placental vascular prostacyclin in severe pre-eclampsia. Prostaglandins 1980; 20: 105–110.PubMedCrossRefGoogle Scholar
  136. 136.
    Ylikorkala O, Viinikkal L Maternal plasma levels of 6keto-PGF1α during pregnancy and the puerperium. Prostaglands Med 1981; 7: 95–99.CrossRefGoogle Scholar
  137. 137.
    Lewis PJ, Boylan P, Friedman LA, et al. Prostacyclin in pregnancy. Br Med J 1980; 280: 1581–1582.PubMedCrossRefGoogle Scholar
  138. 138.
    Remuzzi G, Zosa G, Marchesi D, et al. Plasmatic regulation of vascular prostacyclin in pregnancy. Br Med J 1981; 282: 512–514.CrossRefGoogle Scholar
  139. 139.
    Dusting GJ, Moncada S, Vane JR. Prostacyclin: its biosynthesis, actions and clinical potential. Adv Prostaglandin Thromboxane Leukotriene Res 1982; 10: 59106.Google Scholar
  140. 140.
    Omini C, Folco GC, Pasargiklian, et al. Prostacyclin (PGI2) in pregnant human uterus. Prostaglandins 1979;17:113–120.PubMedCrossRefGoogle Scholar
  141. 141.
    Mitchell MD, Hibby JG, Hicks BR, et al. Possible role for prostacyclin in human parturition. Prostaglandins 1978; 16: 931–937.PubMedCrossRefGoogle Scholar
  142. 142.
    Kawano M, Mori N. Prostacyclin producing activity of human umbilical, placenta and uterine vessels. Prostaglandins 1983; 26: 645–662.PubMedCrossRefGoogle Scholar
  143. 143.
    Greer IA, Walker JJ, et al. Immunoreactive prostacyclin and thromboxane metabolites in normal pregnancy and the puerperium. Br J Obstet Gynaecol 1985; 92: 58 1585.Google Scholar
  144. 144.
    Lewis PJ, Moncada S, O’Grady J, eds. Prostacyclin in pregnancy. New York: Raven Press, 1983: 1–230.Google Scholar
  145. 145.
    McGiff JC, Itskoritz HD. Prostaglandins and the kidney. Circ Res 1973; 33: 479–488.PubMedCrossRefGoogle Scholar
  146. 146.
    Terragno NA, Terragno DA, Pacholczyk D, et al. Prostaglandins and the regulation of uterine blood flow in pregnancy. Nature 1974; 249: 57–58.PubMedCrossRefGoogle Scholar
  147. 147.
    Gant NF, Daley GL, Chand S, et al. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973; 52: 2682–2689.PubMedCrossRefGoogle Scholar
  148. 148.
    Talledo OE, Chesley LC, Zuspan FP. Renin-angiotensin system in normal and toxemic pregnancies. III. Differential sensitivity to angiotensin II and norepinephrine in toxemia of pregnancy. Am J Obstet Gynecol 1968; 100: 218–221.Google Scholar
  149. 149.
    Worley RJ, Gant NF Jr, Everett RM, et al. Vascular responsiveness to pressor agents during human pregnancy. J Reprod Med 1979; 23: 115–128.PubMedGoogle Scholar
  150. 150.
    Hamberg M, Svensson J, Samuelsson B. Proc Natl Acad Sci USA 1975; 72: 2994–2998.PubMedCrossRefGoogle Scholar
  151. 151.
    Koullapis EN, Micolaides KH, Collins WP, et al. Plasmaprostanoids in pregnancy-induced hypertension. Br J Obstet Gynaecol 1982; 89: 617–621.PubMedCrossRefGoogle Scholar
  152. 152.
    Martensson L, Wallenburg HCS. Uterine venous concentrations of 6-keto-PGF (6-K) in normal pregnancy (NP) and pregnancy-induced hypertensive (PIH) women. Presented at the Society for Gynecologic Investigation, 31st Annual Meeting, San Francisco, 1984: 243.Google Scholar
  153. 153.
    Yamaguchi M, Mori N. 6-Keto-PGF, thromboxane B2, and 13, 14-dihydro-15-keto prostaglandin F concentration of normotensive and preeclampsic patients during pregnancy, delivery, and the postpartum period. Am J Obstet Gynecol 1985; 151: 121–127.PubMedGoogle Scholar
  154. 154.
    Walsh SW. Preeclampsia: an imbalance in placenta prostacyclin and thromboxane production. Am J Obstet Gynecol 1985; 151: 110–115.PubMedGoogle Scholar
  155. 155.
    Louden KA, Heptinstall S, Broughton Pipkin F, et al. The effect of low-dose aspirin on platelet reactivity in pregnancy, PIH and neonates. Presented at the Sixth International Congress, International Society for the Study of Hypertension in Pregnancy, Montreal, 1988, abstract 131.Google Scholar
  156. 156.
    Railton A, Davey DA. Aspirin and dipyridamole in the prevention of preeclampsia: effect on plasma prostanoids 6-keto-PGF and TXB2 and clinical outcome of pregnancy. Presented at the Sixth International Congress, International Society for the Study of Hypertension in Pregnancy, Montreal, 1988, abstract 36.Google Scholar
  157. 157.
    Watson KV, Moldow CF, Ogburn PL Jr, et al. Magnesium sulfate: rationale for its use in preeclampsia. Proc Natl Acad Sci USA 1986; 83: 1075–1078.PubMedCrossRefGoogle Scholar
  158. 158.
    Schendel DE, Berg CJ, Yeargin-Allsopp M, et al. Prenatal magnesium sulfate exposure and the risk for cerebral palsy or mental retardation among very low-birth weight children aged three to five years. JAMA 1996; 276: 1805 1810.Google Scholar
  159. 159.
    Chesley LC. Hypertensive disorders of pregnancy. Norwalk, CT: Appleton-Century-Crofts, 1978.Google Scholar
  160. 160.
    Ogburn PL Jr, Turner SI, Williams PP, et al. Preeclampsia and essential fatty acid patterns. Prog Lipid Res 1986; 28: 417–419.CrossRefGoogle Scholar
  161. 161.
    Ogburn PL Jr, Williams PP, Johnson SB, et al. Serum arachidonic acid levels in normal and preeclamptic pregnancies. Am J Obstet Gynecol 1984; 148: 5–9.PubMedGoogle Scholar
  162. 162.
    Ogburn PL Jr, Turner SI, Williams PP, et al. Essential fatty acid patterns in preeclampsia. Zenrtalbl Gynakol 1986; 108: 983–939.Google Scholar
  163. 163.
    Holman RT. Essential fatty acids in nutrition and metabolism. Arch Intern Med 1960; 105: 33–38.PubMedCrossRefGoogle Scholar
  164. 164.
    Olsen SF, Secher NJ. A possible prevention effect of low-dose fish oil on early delivery and preeclampsia: indications from a 50-year-old controlled trial. Br J Nutr 1990; 64: 599–609.PubMedCrossRefGoogle Scholar
  165. 165.
    Nieschlag E, Kremer GJ, Mussgnug U. Insulin, Glucosetoleranz and freie Fettsauren wahrend and nach Akuter Hepatitis. Klin Wochenschr 1970; 48: 381–385.PubMedCrossRefGoogle Scholar
  166. 166.
    Brown RE, Madge GE, Schiller HM. Observations on the pathogenesis of Reye’s syndrome. South Med J 1971; 64: 942–946.PubMedCrossRefGoogle Scholar
  167. 167.
    Zimmerman T, Winkler L, Moller U, et al. Synthesis of arachidonic acid in the human placenta invitro. Biol Neonate 1979; 35: 209–121.CrossRefGoogle Scholar
  168. 168.
    Wallenburg HC, Dekker GA, Makovitz JW, et al. Low-dose aspirin prevents pregnancy-induced hypertension and preeclampsia in angiotensin-sensitive primigravidae. Lancet 1986; 1: 1–3.PubMedCrossRefGoogle Scholar
  169. 169.
    Schiff E, Peleg E, Goldenberg M, et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N Engl J Med 1989; 321: 351–356.PubMedCrossRefGoogle Scholar
  170. 170.
    Benigi A, Gregorini G, Frusca T, et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med 1989; 21: 357–362.CrossRefGoogle Scholar
  171. 171.
    Heyborne KD, Burke MS, Porreco RP. Prolongation of premature gestation in women with hemolysis, elevated liver enzymes and low platelets: a report of five cases. J Reprod Med 1990; 35: 53–57.PubMedGoogle Scholar
  172. 172.
    Sibai BM, Mirro R, Chesney CM, et al. Low-dose aspirin in pregnancy. Obstet Gynecol 1989; 74: 551–557.PubMedGoogle Scholar
  173. 173.
    Goodlin RC, Haesslein HO, Fleming J. Aspirin for the treatment of recurrent toxaemia [letter]. Lancet 1978; 2: 51.PubMedCrossRefGoogle Scholar
  174. 174.
    Sanchez-Ramos L, O’Sullivan MJ, Garrido-Calderon J. Effect of low-dose aspirin on angiotensin II pressor response in human pregnancy. Am J Obstet Gynecol 1987; 156: 193–194.PubMedGoogle Scholar
  175. 175.
    Sibai BM, Curitis SN, Thom E, et al. Prevention of preeclampsia with low-dose aspirin in healthy, nulliparous pregnant women. N Engl J Med 1993; 329: 1213–1218.PubMedCrossRefGoogle Scholar
  176. 176.
    CLASP Collaborative Group. CLASP: a randomized trial of low-dose aspirin for the prevention and treatment of preeclampsia among 9364 pregnant women. Lancet 1994; 343: 619–629.CrossRefGoogle Scholar
  177. 177.
    Lubbe WF, Butler WS, Palmer SJ, et al. Lupus anticoagulant in pregnancy. Br J Obstet Gynaecol 1984; 91: 357–363.PubMedCrossRefGoogle Scholar
  178. 178.
    Lockshin MD, Druzin ML, Qamar T. Prednisone does not prevent recurrent fetal death in women with antiphospholipid antibody. Am J Obstet Gynecol 1989; 160: 439–443.PubMedGoogle Scholar
  179. 179.
    Kutteh WH. Antiphospholipid antibody-associated recurrent pregnancy loss: Treatment with heparin and low-dose aspirin is superior to low-dose aspirin alone. Am J Obstet Gynecol 1996; 174: 1584–1589.PubMedCrossRefGoogle Scholar
  180. 180.
    Rai R, Cohen M, Dave M, Regan L. Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phospholipid antibodies (or antiphospolipid antibodies) BMJ 1997; 314: 253–257.Google Scholar
  181. 181.
    Terragno NA, Terragno A. Prostaglandin metabolism in the fetal and maternal vasculature. Fed Proc 1979; 38: 7577.Google Scholar
  182. 182.
    Terragno NA, Terragno A. McGiff JC, et al. Synthesis of prostaglandins by the ductus arteriosus of the bovine fetus. Prostaglandins 1977; 14: 721–727.PubMedCrossRefGoogle Scholar
  183. 183.
    Clyman RI. Developmental responses to oxygen, arachidonic acid, and indomethacin in the fetal lamb ductus arteriosus in vitro. Prostaglandins Med 1978; 1: 167174.Google Scholar
  184. 184.
    Albert BS, Lewins MJ, Rowland DW, et al. Plasma indomethacin (indo) levels in newborns with patent ductus (PDA). Presented at the Fourth International Prostaglandin Conference, Washington, DC, 1979.Google Scholar
  185. 185.
    Dietze G, Matthias W, Bottger I, et al. Possible involvement of kinins and prostaglandins in the translation of insulin action on glucose uptake into skeletal muscle. Adv Exp Med Biol 1979; 120A: 511–520.Google Scholar
  186. 186.
    Robertson RP, Metz SA. Sounding board: prostaglandins, the glucoreceptor, and diabetes. N Engl J Med 1979; 301: 1446–1447.PubMedCrossRefGoogle Scholar
  187. 187.
    Pederson J. The pregnant diabetic and her newborn. 2nd ed. Baltimore: Williams & Wilkins, 1977.Google Scholar
  188. 188.
    Whitelaw A. Subcutaneous fat in newborn infants of diabetic mothers: an indication of quality of diabetic control. Lancet 1977; 1: 15–18.PubMedCrossRefGoogle Scholar
  189. 189.
    Susa JB, McCormick KL, Widness JA, et al. Chronic hyperinsulinemia in the fetal rhesus monkey. Diabetes 1979; 28: 1058–1063.PubMedGoogle Scholar
  190. 190.
    Vileisis RA, Oh W. Enhanced fatty acid synthesis in hyperinsulinemic rat fetuses. J Nutr 1983; 113: 246–252.PubMedGoogle Scholar
  191. 191.
    Ogburn PL Jr, Goldstein M, Walker J, et al. Prolonged hyperinsulinemia reduces plasma fatty acid levels in major lipid groups in fetal sheep. Am J Obstet Gynecol 1989; 161: 728–732.PubMedGoogle Scholar
  192. 192.
    Stonestreet BS, Ogburn PL Jr, Goldstein M, et al. Effects of chronic fetal hyperinsulinemia on plasma arachidonic acid and prostaglandin concentrations. Am J Obstet Gynecol 1989; 161: 894–899.PubMedGoogle Scholar
  193. 193.
    Gerrard JM, Stuart MJ, Rao GHR, et al. Alteration in the balance of prostaglandin and thromboxane synthesis in diabetic rats. J Lab Clin Med 1980; 95: 950–958.PubMedGoogle Scholar
  194. 194.
    Halushka PV, Roger RC, Loadholt CB, et al. Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 1981; 97: 87–96.PubMedGoogle Scholar
  195. 195.
    Butkus A, Shirey EK, Schumacher OF. Thromboxane biosynthesis in platelets of diabetes and coronary artery disease patients. Artery 1982; 11: 238–251.PubMedGoogle Scholar
  196. 196.
    Halushka PV, Mayfield R, Colwell JA. Insulin and arachidonic acid metabolism in diabetes mellitus. Metabolism 1985; 34 (suppl 1): 32–36.PubMedCrossRefGoogle Scholar
  197. 197.
    McDonald JWD, Dupre J, Roger NW, et al. Comparison of platelet thromboxane synthesis in diabetic patients on conventional insulin therapy and continuous insulin infusion. Thromb Res 1982; 28: 705–712.PubMedCrossRefGoogle Scholar
  198. 198.
    Axelrod L, Levine L. Plasma prostaglandin levels in rats with diabetes mellitus and diabetic ketoacidosis. Diabetes 1982; 31: 994–1001.PubMedGoogle Scholar
  199. 199.
    Stuart MJ, Elrad H, Graeber JE, et al. Increased synthesis of prostaglandin endoperoxides and platelet hyperfunction in infants of mothers with diabetes mellitus function in infants of mothers with diabetes mellitus. J Lab Clin Med 1979; 94: 12–17.Google Scholar
  200. 200.
    Stuart MJ, Sunderji SG, Walenga RW, et al. Abnormalities in vascular arachidonic acid metabolism in the infant of the diabetic mother. Br Med J 1985; 290: 1700 1702.Google Scholar
  201. 201.
    Tuna N, Frankhauser S, Goetz FC. Total serum fatty acids in diabetes: relative and absolute concentrations of individual fatty acids. Am J Med Sci 1968; 255: 120131.Google Scholar
  202. 202.
    Chen C, Adam P, Laskowski D, et al. The plasma-free fatty acid composition and blood glucose of normal and diabetic pregnant women and of their newborns. Pediatrics 1965; 36: 843–855.PubMedGoogle Scholar
  203. 203.
    Pinter E, Reece EA. Diabetes-associated congenital malformations: epidemiology, pathogenesis, and experimental methods of induction and prevention. In: Reece EA, Coustan DR, eds. Diabetes mellitus in pregnancy: principles and practice. New York: Churchill Livingstone, 1988: 205–245.Google Scholar
  204. 204.
    Pinter E, Reece EA, Ogburn PL Jr, et al. Fatty acid content of yolk sac and embryo in hyperglycemia-induced embryopathy and effect of arachidonic acid supplementation. Am J Obstet Gynecol 1988; 159: 1484 1490.Google Scholar
  205. 205.
    Rosenthal M, Whitehurst M. Fatty acyl delta 6 desaturation activity of cultured human endothelial cells: modulation by fetal bovine serum. Biochim Biophys Acta 1983; 750: 450–496.Google Scholar
  206. 206.
    Ongari M, Ritter J, Orchard M, et al. Correlation of prostacyclin synthesis by human umbilical artery with status of essential fatty acid. Am J Obstet Gynecol 1984; 149: 455–460.PubMedGoogle Scholar
  207. 207.
    Obgurn PL Jr. The treatment of preterm labor. Postgrad Obstet Gynecol 1990; 10: 1–5.Google Scholar
  208. 208.
    Iams JD, Johansen FF, Creasy RK. Prevention of preterm birth. Clin Obstet Gynecol 1988; 31: 599–615.PubMedCrossRefGoogle Scholar
  209. 209.
    Ferguson JE, Hensleigh PA, Kredentser D. Adjunctive use of magnesium sulfate with ritodrine for preterm labor tocolysis. Am J Obstet Gynecol 1984; 148: 166–171.PubMedGoogle Scholar
  210. 210.
    Ogburn PL Jr, Hansen CA, Williams PP, et al. Magnesium sulfate and betamimetic dual agent tocolysis in preterm labor with single agent failure. J Reprod Med 1985; 30: 583587.Google Scholar
  211. 211.
    Niebyl JR, Blake DA, White RB, et al. The inhibition of premature labor with indomethacin. Am J Obstet Gynecol 1980; 136: 1014–1019.PubMedGoogle Scholar
  212. 212.
    Morales WJ, Smith SG, Angel JL, et al. Efficiency and safety of indomethacin versus ritodrine in the management of preterm labor: a randomized study. Obstet Gynecol 1989; 74: 567–572.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paul L. OgburnJr.

There are no affiliations available

Personalised recommendations