Advertisement

Screening of Variables in Xylanase Recovery Using BDBAC Reversed Micelles

  • E. M. G. Rodrigues
  • A. PessoaJr.
  • A. M. F. Milagres
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Xylanase recovery by reversed micelles using cationic surfactant (N-ben-zyl-N-dodecyl-N-bis(2-hydroxyethhyl)ammonium chloride) BDBAC was evaluated under different experimental conditions. A full factorial design with center point was employed to verify the influence of different factors on the recovery. A mathematical model was found to represent the xylanase yield (Y) as a function of BDBAC and hexanol: Y = 4.32 + 5. lB + 2.64D + 0.83B2 1.46D2, where B = BDBAC and D = hexanol. The highest xylanase recovery (27%), indicated by the model was attained at pH = 8.1, BDBAC = 0.38 M and hexanol = 8.6%. Under these conditions, and to test the model, a new xylanase extraction was performed in laboratory, giving 29.4% recovery yield, this value was similar to that predicted by the model.

Index Entries

Reversed micelles xylanase liquid-liquid extraction statistical design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duran, N., Milagres, A. M. F., Esposito, E., and Haun, M. (1995), in Enzymatic Degradation of Insoluble Carbohydrates, Saddler, J. N. and Ponner, M. H., eds., American Chemical Society, Washington, DC, pp. 332–338.Google Scholar
  2. 2.
    Milagres, A. M F. and Prade, R. A. (1994), Enzyme Microbiol. Technol. 16, 627–631.CrossRefGoogle Scholar
  3. 3.
    Yang, J. L. and Eriksson, K. E. L. (1992), Holzforschung 46, 481–488.CrossRefGoogle Scholar
  4. 4.
    Eriksson, K. E. L. (1990), Wood Sci. Technol. 24, 79–101.CrossRefGoogle Scholar
  5. 5.
    Linko, M., Poutanen, K., and Viikari, L. (1989), in Enzyme Systems for Lignocellulose Degradation, Coughan, M. P., ed., Elsevier Applied Science, NY, pp. 331–346.Google Scholar
  6. 6.
    Vicuna, R., Oyarzun, E., and Osses, M. (1995), J Biotechnol. 40(3), 163–168.CrossRefGoogle Scholar
  7. 7.
    Wong, K. K. Y., Nelson, S. L., and Saddler, J. N. (1996), J Biotechnol. 48(1-2), 137–145.CrossRefGoogle Scholar
  8. 8.
    Senior, D. J., Hamilton, J., Bernier, R. L., and Dumanoir, J. R. (1992), Tappi J. 11, 125–130.Google Scholar
  9. 9.
    Tolan, J. S. and Canovas, R. V. (1992), Pulp Paper Can. 93, 39–40.Google Scholar
  10. 10.
    Viikari, L., Sundquist, J., and Kettunen, J. (1991), Paper Timber 73, 384–389.Google Scholar
  11. 11.
    Mutsaers, J. H. G. M. (1991), in Xylans and Xylanases International Symposium, Amsterdam, Elsevier, p. 48.Google Scholar
  12. 12.
    Biely, P. (1985), Trends Biotechnol. 3, 286–290.CrossRefGoogle Scholar
  13. 13.
    Wong, K. K. Y., Tan, L. U. L., and Saddler, J. N. (1988), Microbiol. Rev. 52(13), 305–317.Google Scholar
  14. 14.
    Gattinger, L. D., Duvnjak, Z., and Khan, A. W. (1990), Appl. Microbiol. Biotechnol. 33, 21–25.CrossRefGoogle Scholar
  15. 15.
    Palma, M. B., Milagres, A. M. F., Prata, A. M. R., and Mancilha, J. M. (1996), Process Biochem. 141–145.Google Scholar
  16. 16.
    Brandani, V., Di Giacomo, G., and Spera, L. Process Biochem. 31(2), 125–128.Google Scholar
  17. 17.
    Krei, G. A. and Hustedt, H. (1992), Chem. Eng. Sci. 47, 99–111.CrossRefGoogle Scholar
  18. 18.
    Dekker, M., Van’t Riet, K., and Weijers, S. R. (1986), Chem. Eng. J. 33, B-27-B-33.Google Scholar
  19. 19.
    Pessoa, A., Jr. and Vitolo, M. (1997), Biotechnol. Tech. 11(6), 421–422.CrossRefGoogle Scholar
  20. 20.
    Leser, M. E. and Luisi, P. L. (1990), Chimia 44, 270–282.Google Scholar
  21. 21.
    Jolivalt, C., Minier, M., and Renon, H. (1990), J Coll. Inter. Sci. 135, 85–96.CrossRefGoogle Scholar
  22. 22.
    Pessoa, A., Jr. (1995), Tese de Doutorado, USP, São Paulo.Google Scholar
  23. 23.
    Krei, G. A., Meyer, U., Borner, B., and Hustedt, H. (1995), Bioseparation 5, 175–183.Google Scholar
  24. 24.
    Krei, G. A. (1993), PhD Thesis, Technical University Braunschweig, Braunschweig, Germany.Google Scholar
  25. 25.
    Brandani, V., Di Giacomo, G., and Spera, L. (1994), Process Biochem. 29, 363–367.CrossRefGoogle Scholar
  26. 26.
    Barros Neto, B., Scarminio, I. S., and Bruns, R. E. (1995), Planejamento e Otimização de Experiments, Editora da Unicamp, Campinas.Google Scholar
  27. 27.
    Milagres, A. M. F. (1988), Tese de Mestrado, UFV, Viçosa.Google Scholar
  28. 28.
    Vogel, H. J. (1956), Microbial Genet. Bull. 13, 42–43.Google Scholar
  29. 29.
    Milagres, A. M. F. and Lacis, L. S. (1991), Biotechnom. Lett. 13, 113–118.CrossRefGoogle Scholar
  30. 30.
    Bailey, M. J., Biely, P., and Poutanen, K. (1992), J Biotechnol. 23(3), 257–270.CrossRefGoogle Scholar
  31. 31.
    Miller, G. L. (1959), Anal Chem. 31, 426–428.CrossRefGoogle Scholar
  32. 32.
    Tsujibo, H., Sakamoto, T., Nishino, N., and Hasegawa, T. (1990), J. Appl. Bacteriol. 69, 398–405.CrossRefGoogle Scholar
  33. 33.
    Honda, H., Kudo, T., Ikura, Y., and Horikoshi, K. (1985), Can. J. Microbiol. 31, 538–542.CrossRefGoogle Scholar
  34. 34.
    Gorbacheva, I. V. and Rodionova, N. A. (1977), Biochem. Biophys. Acta 484, 79–83.CrossRefGoogle Scholar
  35. 35.
    Subramani, S., Shah, C., and Madamwar, D. (1996), Appl. Biochem. Biotechnol. 60, 33–39.CrossRefGoogle Scholar
  36. 36.
    Blanch, H. W. (1990), Ferment. Technol. Ind. Appl. 329–336.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. M. G. Rodrigues
    • 1
  • A. PessoaJr.
    • 1
  • A. M. F. Milagres
    • 1
  1. 1.Department of BiotechnologyFaculty of Chemical Engineering of Lorena 12.600-000LorenaSP-Brazil

Personalised recommendations