Modeling the Enzymatic Hydrolysis of Dilute-Acid Pretreated Douglas Fir

  • Daniel J. Schell
  • Mark F. Ruth
  • Melvin P. Tucker
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Glucose yield from the enzymatic hydrolysis of cellulose was investigated as a function of cellulase enzyme loading (7–36 filter paper units [FPU]/g cellulose) and solids concentration (7–18% total solids) for up to 72 h on dilute sulfuric-acid pretreated Douglas Fir. The saccharification was performed on whole hydrolysate with no separation or washing of the solids. Enzyme loading had a significant effect on glucose yield; solids concentration had a much smaller effect even at higher glucose concentrations. The data were used to generate an empirical model for glucose yield, and to fit parameters of a cellulose hydrolysis kinetic model. Both models could be used for economic evaluation of a separate hydrolysis and fermentation process.

Index Entries

Cellulose hydrolysis softwood ethanol enzyme kinetics cellulase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schell, D. ]., McMillan, J. D., Philippidis, G. P., Hinman, N. D., and Riley, C. (1992), in Advances in Solar Energy, vol. 7, Boer, K. W., ed., American Solar Energy Society, Boulder, CO, pp. 373–448.Google Scholar
  2. 2.
    Takagi, S. N., Abe, S., Suzuki, S., Emert, G. H., and Yata, N. (1977), in Bioconversion of Cellulosic Substances into Energy, Chemicals and Microbial Protein, Ghose, T. K., ed., Indian Institute of Technology, Dehli, India, pp. 551–571.Google Scholar
  3. 3.
    Becker, D. K, Blotkamp, P. J., and Emert, G. H. (1981), in Fuels from Biomass and Waste, Klass, D. L. and Emert, G. H., eds., Ann Arbor Science, Ann Arbor, MI, pp. 375–392.Google Scholar
  4. 4.
    Spindler, D. D., Wyman, C. E., Mohagheghi, A., and Grohmann, K. (1988), Appl. Biochem. Biotechnol. 17, 279–293.CrossRefGoogle Scholar
  5. 5.
    Szczodrak, J. (1989), Biotechnol. Bioeng. 33, 1112–1116.CrossRefGoogle Scholar
  6. 6.
    Spindler, D. D., Wyman, C. E., and Grohmann, K. (1991), Appl. Biochem. BioTechnol. 24/25, 275–286.CrossRefGoogle Scholar
  7. 7.
    Ekland, R. and Zacchi, G. (1995), Enzyme Microb. Technol. 17, 255–259.CrossRefGoogle Scholar
  8. 8.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. P., eds., American Chemical Society, NY, pp. 411–437.CrossRefGoogle Scholar
  9. 9.
    Mandels, M., Hontz, L, and Nystrom, J. (1974), Biotech. Bioeng. 16, 1471–1493.CrossRefGoogle Scholar
  10. 10.
    Schwald, W., Breuil, C, Brownell, H. H., Chan, M., and Saddler, J. N. (1989), Appl. Biochem. Biotechnol. 20/21, 29–44.CrossRefGoogle Scholar
  11. 11.
    Patrick Lee, K. C, Bulls, M., Holmes, J., and Barrier, J. W. (1997), Appl. Biochem. BioTechnol. 66, 1–23.CrossRefGoogle Scholar
  12. 11.
    Ekland, R. and Zacchi, G. (1995), Enzyme Microb. Technol. 17, 255–259.CrossRefGoogle Scholar
  13. 13.
    Vlasenko, E. Yu., Ding, H., Labavitch, J. M., and Shoemaker, S. P. (1997), Biores. Technol. 59, 109–119.CrossRefGoogle Scholar
  14. 14.
    Dale, B. E., Leong, C. K., Pham, T. K., Esquivel, V. M., Rios, I., and Latimer, V. M. (1996), Biores. Technol. 56, 111–119.CrossRefGoogle Scholar
  15. 15.
    Philippidis, G. P., Spindler, D. D., and Wyman, C. E. (1992), Appl. Biochem. BioTechnol. 34/35, 543–556.CrossRefGoogle Scholar
  16. 16.
    Philippidis, G. P. (1996), in Handbook on Bioethnanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis: Washington, DC, pp. 253–285.Google Scholar
  17. 17.
    Philippidis, G. P. and Hatzis, C. (1997), Biotechnol. Prog. 13, 222–231.CrossRefGoogle Scholar
  18. 18.
    Philippidis, G. P., Smith, T. K., and Wyman, C. E. (1993), Biotechnol. Bioeng. 41, 846–853.CrossRefGoogle Scholar
  19. 19.
    Nutor, J. R. and Converse, A. O. (1991), Appl. Biochem. BioTechnol. 28/29, 757–772.CrossRefGoogle Scholar
  20. 20.
    Converse, A. O. (1993), in Bioconversion of Forest and Agricultural Residues, Saddler, J. N., ed. CAB International, Oxon, UK, pp. 93–106.Google Scholar
  21. 21.
    South, C.R., Hogsett, A.L, and Lynd, L.R. (1995), EnzymeMicrob. Technol. 17, 797–803.CrossRefGoogle Scholar
  22. 22.
    Nguyen, Q. A., Tucker, M. P., Boynton, B. L, Keller, F. A., and Schell, D. J. (1998), Appl. Biochem. Biotechnol., in press.Google Scholar
  23. 23.
    Vinzant, T. B., Ponfick, L., Nagle, N. J., Ehrman, C. I., Reynolds, J. B., and Himmel, M. E. (1994), Appl. Biochem. BioTechnol. 45/46, 611–626.CrossRefGoogle Scholar
  24. 24.
    Fengel, D. and Wegener, D. (1983), Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany.CrossRefGoogle Scholar
  25. 25.
    Wright, J. (1988), Chem. Eng. Prog. 84(8), 62–74.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Daniel J. Schell
    • 1
  • Mark F. Ruth
    • 1
  • Melvin P. Tucker
    • 1
  1. 1.National Renewable Energy LaboratoryGoldenUSA

Personalised recommendations