Skip to main content

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

In this study, activated sludge bacteria from a conventional wastewater treatment process were induced to accumulate polyhydroxyalkanoates (PHAs) under different carbon-nitrogen (C:N) ratios. As the C:N ratio increased from 20 to 140, specific polymer yield increased to a maximum of 0.38 g of polymer/g of dry cell mass while specific growth yield decreased. The highest overall polymer production yield of 0.11 g of polymer/g of carbonaceous substrate consumed was achieved using a C:N ratio of 100. Moreover, the composition of polymer accumulated was dependent on the valeric acid content in the feed. Copolymer poly(3-hydroxybutyrate-co-3-hydroxy-valerate) [P(3HB-co-3HV)] was produced in the presence of valeric acid. The 3-hydroxyvalerate (3HV) mole fraction in the copolymer was linearly related to valeric content in the feed, which reached a maximum of 54% when valeric acid was used as sole carbon source. When the 3HV U in the polymer increased from 0-54 mol%, the melting temperature decreased from 178° to 99°C. Thus, the composition, and hence the mechanical properties, of the copolymer produced from activated sludge can be controlled by adjusting the mole fraction of valeric acid in the feed medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chua, H., Yu, P. H. F., Xing, S., and Ho, L. Y. (1995), J. Plast. Technol. 18, 132–148.

    Google Scholar 

  2. Hong Kong Government Industry Department (1991), in Techno-Economic and Market Research Study of Hong Kong Plastic Industry, vol. 1, 1990–1991, Hong Kong Government Press.

    Google Scholar 

  3. Chang, H. N. (1994), in Better Living Through Innovative Biochemical Engineering, Teo, W. K., ed., Singapore University Press, National University of Singapore, Singapore, pp. 24–30.

    Google Scholar 

  4. Chua, H., Yu, P. H. F., Xing, S., and Ho, L. Y. (1995), Potential of Biodegradable Plastics as Environmentally-Friendly Substitutes for Conventional Plastics in Hong Kong. Presented in 17th Symposium on Biotechnology for Fuels and Chemicals, May 1995, CO.

    Google Scholar 

  5. Sang Yup Lee (1996), Biotechnol. Bioeng. 49, 1–14.

    Article  CAS  Google Scholar 

  6. Suzuki, T., Yamane, T., and Shimizu, S. (1986), Appl. Microbiol. BioTechnol. 24, 370–374.

    Article  CAS  Google Scholar 

  7. Maness, P.-C. and Weaver, P. F. (1994), Appl. Biochem. Biotech. 45/46, 395–407.

    Article  Google Scholar 

  8. Page, W. J. (1989), Appl. Microbiol. BioTechnol. 31, 329–333.

    Article  CAS  Google Scholar 

  9. Page, W. J. (1992), FEMS Microbiol. Rev. 103, 149–158.

    Article  CAS  Google Scholar 

  10. Page, W. J. and Knosp, O. (1989), Appl. Environ. Microbiol. 55, 1334–1339.

    CAS  Google Scholar 

  11. Chua, H., Yu, P. H. F., and Ho, L. Y. (1997), Appl. Biochem. BioTechnol. 63, 627–635.

    Article  Google Scholar 

  12. Chua, H., Yu, P. H. F., and Ho, L. Y. (1997), J. IES Chem. Eng. 37(2), 9–13.

    Google Scholar 

  13. Kim, G. J., Yun, K. Y., Bae, K. S., and Rhee, Y. H. (1992), Biotechnol. Lett. 14, 27–32.

    Article  CAS  Google Scholar 

  14. American Public Health Association (1995), Standard Methods for the Examination of Water and Wastewater, 19th ed., Washington, DC.

    Google Scholar 

  15. Lowell, L. W. and Edwin, N. D. (1972), Env. Sci. Technol. 6(2), 161–164.

    Article  Google Scholar 

  16. Ho, L. Y. (1997), Synthesis of Environmentally Friendly Materials, Master Thesis, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong, China.

    Google Scholar 

  17. Doi, Y., Segawa, A., and Kunioka, M. (1990), Intl. J. Biol. Macromol. 12, 106–111.

    Article  CAS  Google Scholar 

  18. Bluhm, T. and Marchessualt, R. H. (1988), Can. Chem. News. 40, 25–26.

    Google Scholar 

  19. Ishihara, Y., Shimizu, H., and Shioya, S. (1996), J. Ferment. Bioeng. 81, 422–428.

    Article  CAS  Google Scholar 

  20. Yamane, T. (1993), Biotechnol. Bioeng. 41, 165–170.

    Article  CAS  Google Scholar 

  21. Dave, H., Ramakrishna, C, and Desai, J. D. (1996), Indian J. Exp. Biol. 34, 216–219.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chua, H., Yu, P.H.F., Ma, C.K. (1999). Accumulation of Biopolymers in Activated Sludge Biomass. In: Davison, B.H., Finkelstein, M. (eds) Twentieth Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1604-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1604-9_36

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7214-4

  • Online ISBN: 978-1-4612-1604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics