Skip to main content

Abstract

The key role of Ca2+ ions (Ca2+) for the function of excitable tissues was already described in 1882 in the classical experiments by Ringer. Since then, a plethora of cellular functions have been found to require Ca2+ signals or simply the maintenance of a set Ca2+ concentration. The major requirement for the signaling function of Ca2+ is the existence of a concentration gradient between the interstitial fluid and the interior of the cell. Whereas extracellular concentrations of free Ca2+ range between 1.3 and 1.8 mM, the free intracellular Ca2+ concentration ([Ca2+]i) is about 100 nM. Thus, cells are continuously faced with the problem of maintaining a concentration gradient of more than four orders of magnitude across the plasma membrane. Various physiological stimuli increase [Ca2+]i transiently and thereby induce cellular responses. However, under pathological conditions, changes of [Ca2+]i are generally more pronounced and sustained. Pronounced elevations of [Ca2+]i activate hydrolytic enzymes, lead to exaggerated energy expenditure, impair energy production, initiate cytoskeletal degradation, and ultimately result in cell death. Such Ca2+-induced cytotoxicity may play a major role in several neuropathological phenomena including chronic neurodegenerative diseases as well as acute neuronal losses (i.e., during the pathogenesis of stroke).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleckenstein A. Calcium antagonism: history and prospects for a multifaceted pharmaco-dynamic principle, in Calcium Antagonists and Cardiovascular Disease (Opie LH, ed.), Raven Press, New York, 1984: pp. 9–28.

    Google Scholar 

  2. Leonard JP, Salpeter MM. Agonist-induced myopathy at the neuromuscular junction is mediated by calcium. J Cell Biol 1979, 82: 811–819.

    Article  PubMed  CAS  Google Scholar 

  3. Schanne FAX, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death. Science 1979, 206: 700–702.

    Article  PubMed  CAS  Google Scholar 

  4. Nicotera P, Zhivotovsky B, Orrenius S. Nuclear Ca2+ transport and the role of Ca2+ in apoptosis. Cell Calcium 1994, 16: 279–288.

    Article  PubMed  CAS  Google Scholar 

  5. Nicotera P, Bellomo G, Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 1992, 32: 449–470.

    Article  PubMed  CAS  Google Scholar 

  6. Trump BF, Berezesky IK. Calcium-mediated cell injury and cell death. FASEB J 1995, 9: 219–228.

    PubMed  CAS  Google Scholar 

  7. Siesjö BK. Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1981, 1: 155–185.

    Article  PubMed  Google Scholar 

  8. Siesjö BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab 1989, 9: 127–140.

    Article  PubMed  Google Scholar 

  9. A practical guide to the study of calcium in living cells, in Methods in Cell Biology (Nuccitelli R, ed.) Academic, San Diego, 1994.

    Google Scholar 

  10. Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and circadian clock. Science 1993, 260: 238–241.

    Article  PubMed  CAS  Google Scholar 

  11. Mattson MP, Rychlik B, Chu C, Christakos S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein Calbindin-D28k in cultured hippocampal neurons. Neuron 1991, 6: 41–51.

    Article  PubMed  CAS  Google Scholar 

  12. Ghosh A, Carnahan J, Greenberg ME. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 1994, 263: 1618–1623.

    Article  PubMed  CAS  Google Scholar 

  13. Dugan LL, Sensi SL, Canzoniero LMT, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 1995, 15: 6377–6388.

    PubMed  CAS  Google Scholar 

  14. White RJ, Reynolds IJ. Mitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons. J Neurosci 1995, 15: 1318–1328.

    PubMed  CAS  Google Scholar 

  15. Shelanski ML. Intracellular ionic calcium and the cytoskeleton in living cells. Ann NY Acad Sci 1990, 568: 121–124.

    Article  Google Scholar 

  16. Miljanich GP, Ramachandran J. Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 1995, 35: 707–734.

    Article  PubMed  CAS  Google Scholar 

  17. Pollard H, Charriaut-Marlangue C, Centagrel A, Represa A, Robain O, Moreau J, Ben-Ari Y. Kainate-induced apoptotic cell death in hippocampal neurons. Neuroscience 1994, 63: 7–18.

    Article  PubMed  CAS  Google Scholar 

  18. Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R, Miljanich G, Ramachandran J. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 1993, 90: 7894–7897.

    Article  PubMed  CAS  Google Scholar 

  19. Cooper AJ, Wooller S, Mitchell IJ. Elevated striatal Fos immunoreactivity following 6-hydrodopamine lesioning of the rat is mediated by excitatory amino acid transmission. Neurosci Lett 1995, 194: 73–76.

    Article  PubMed  CAS  Google Scholar 

  20. Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991, 349: 414–418.

    Article  PubMed  CAS  Google Scholar 

  21. Sucher NJ, Lei SZ, Lipton SA. Calcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglion cells in culture. Brain Res 1991, 297: 297–302.

    Article  Google Scholar 

  22. Dreyer EB, Kaiser, PK, Offermann JT, Lipton SA. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990, 248: 364–367.

    Article  PubMed  CAS  Google Scholar 

  23. Rossi AD, Viviani B, Zhivotovsky B, Manzo L, Orrenius S, Vahter M, Nicotera P. Inorganic mercury modifies Ca2+ signalling, triggers apoptosis and potentiates NMDA toxicity in neural cells. Cell Death Different. 1997, 4: 317–324.

    Article  CAS  Google Scholar 

  24. Rothman, S. M., Olney JW. Excitotoxicity and the NMDA receptor—still lethal after eight years. Trends Neurosci 1995, 18: 57–58.

    Article  PubMed  CAS  Google Scholar 

  25. Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988, 11: 465–469.

    Article  PubMed  CAS  Google Scholar 

  26. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994, 17: 31–108.

    Article  PubMed  CAS  Google Scholar 

  27. Brorson JR, Manzolillo PA, Miller RJ. Ca2+ entry via AMPA/kainate receptors and excitotoxicity in cultured cerebellar Purkinje cells. J Neurosci 1994, s14: 187–197.

    Google Scholar 

  28. Holzwarth JA, Gibbons SJ, Brorson JR, Philipson LH, Miller RJ. Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J Neurosci 1994, 14: 1879–1891.

    PubMed  CAS  Google Scholar 

  29. Brorson JR, Manzolillo PA, Gibbons SJ, Miller RJ. AMPA-receptor desensitization predicts the selective vulnerability of cerebellar purkinje cells to excitotoxicity. J Neurosci 1995, 15: 4515–4524.

    PubMed  CAS  Google Scholar 

  30. Gu JG, Albuquerque C, Lee CJ, MacDermott AB. Synaptic strengthening through activation of Ca2+-permeable AMPA-receptors. Nature 1996, 381: 793–795.

    Article  PubMed  CAS  Google Scholar 

  31. Seeburg PH. The TINS/TiPS lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 1993, 16: 359–365.

    Article  PubMed  CAS  Google Scholar 

  32. Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 1994, 263: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  33. Dumuis A, Sebben M, Fagni L, Prezeau L, Manzoni O, Cragoe EJ Jr, Bockaert J. Stimulation by glutamate receptors of arachidonic acid release depends on the Na+/Ca2+ exchanger in neuronal cells. Mol Pharmacol 1993, 43: 976–981.

    PubMed  CAS  Google Scholar 

  34. Carini R, Bellomo G, Dianzini MU, Albano E. Evidence for a sodium-dependent calcium influx in isolated rat hepatocytes undergoing ATP depletion. Biochem Biophys Res Comm 1994, 202: 360–366.

    Article  PubMed  CAS  Google Scholar 

  35. Orrenius S, Burkitt MJ, Kass GEN, Dypbukt JM, Nicotera P. Calcium ions and oxidative injury. Ann Neurol 1992, 32: S33–S42.

    Article  PubMed  CAS  Google Scholar 

  36. Nicotera P, Orrenius S, Nilsson T, Berggren P-O. An inositol 1,4,5-triphosphate-sensitive Ca2+pool in liver nuclei. Proc Natl Acad Sci USA 1990, 87: 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  37. Nicotera P, McConkey DJ, Jones DP, Orrenius S. ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 1989, 86: 453–457.

    Article  PubMed  CAS  Google Scholar 

  38. Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH. ATP-dependent accumulation and inositol triphosphate-or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell 1995, 80: 439–444.

    Article  PubMed  CAS  Google Scholar 

  39. Fujita K, Lazarovici P, Guroff G. Regulation of the differentiation of PC12 Pheochro-mocytoma Cells. Environ Health Perspectives 1989, 48: 127–142.

    Article  Google Scholar 

  40. Andreeva N, Khodorov B, Stelmashook E, Cragoe E Jr, Victorov I. Inhibition of Na+/Ca2+ exchange enhances delayed neuronal death elicited by glutamate in cerebellar granule cell cultures. Brain Res 1991, 548: 322–325.

    Article  PubMed  CAS  Google Scholar 

  41. Hartley DM, Choi DW. Delayed rescue of N-methyl-D-aspartate receptor-mediated neuronal injury in cortical culture. J Pharmacol Exp Ther 1989, 250: 752–758.

    PubMed  CAS  Google Scholar 

  42. Mattson MP, Guthrie PB, Kater SB. A role for Na+-dependent Ca2+ extrusion in protection against neuronal excitotoxicity. FASEB J 1989, 3: 2519–2526.

    PubMed  CAS  Google Scholar 

  43. Carafoli E. The Ca2+ pump of the plasma membrane. Physiol Rev 1991, 71: 129–153.

    PubMed  CAS  Google Scholar 

  44. Frandsen A, Schousboe A. Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem 1991, 56: 1075–1078.

    Article  PubMed  CAS  Google Scholar 

  45. Bouchelouche P, Belhage B, Frandsen A, Drejer J, Schousboe A. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res 1989, 76: 281–291.

    Article  PubMed  CAS  Google Scholar 

  46. Stehno-Bittel L, Perez-Terzic C, Clapham DE. Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 1995, 270: 1835–1838.

    Article  PubMed  CAS  Google Scholar 

  47. Richter C, Gogvadze V, Schlapbach R, Schweizer M, Schlegel J. Nitric oxide kills hepatocytes by mobilizing mitochondrial calcium. Biochem Biophys Res Commun 1994, 205: 1143–1150.

    Article  PubMed  CAS  Google Scholar 

  48. Galli C, Meucci O, Scorziello A, Werge TM, Calissano P, Schettini G. Apoptosis in cerebellar granule cells is blocked by high KC1, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis. J Neurosci 1995, 15: 1172–1179.

    PubMed  CAS  Google Scholar 

  49. Kluck RM, McDougall CA, Harmon BV, Halliday JW. Calcium chelators induce apoptosis—evidence that raised intracellular ionised calcium is not essential for apoptosis. Biochim Biophys Acta 1994, 1223: 247–254.

    Article  PubMed  CAS  Google Scholar 

  50. Johnson EM, Koike T, Franklin J. A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol 1992, 115: 163–166.

    Article  PubMed  Google Scholar 

  51. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 1991, 88: 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  52. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994, 65: 1883–1885.

    Article  Google Scholar 

  53. Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993, 13: 2651–2661.

    PubMed  CAS  Google Scholar 

  54. Lafon-Cazal M, Clucasi M, Gaven F, Pietri S, Bockaert J. Nitric oxide, Superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 1993, 32: 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  55. Bonfoco E, Leist M, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Cytoskeletal breakdown and apoptosis elicited by NO-donors in cerebellar granule cells require NMDA-receptor activation. J Neurochem 1996, in press.

    Google Scholar 

  56. Traystman RJ, Kirsch JR, Koehler RC. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 1991, 71: 1185–1195.

    PubMed  CAS  Google Scholar 

  57. Siman R, Noszek JC. Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1988, 1: 279–287.

    Article  PubMed  CAS  Google Scholar 

  58. Clawson GA, Norbeck LL, Hatem CL, Rhodes C, Amiri P, McKerrow JH, Patierno SR, Fiskum G. Ca2+-regulated serine protease associated with the nuclear scaffold. Cell Growth & Differentiation 1992, 3: 827–838.

    CAS  Google Scholar 

  59. Dumuis A, Sebben M, Haynes L, Pin JP, Bockaert J. NMDA receptors activate the arachi-donic acid cascade system in striatal neurons. Nature 1988, 336: 68–70.

    Article  PubMed  CAS  Google Scholar 

  60. Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagni G. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 1992, bd59: 600–606.

    Article  Google Scholar 

  61. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  62. Dykens JA, Stern A, Trenkner E. Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 1987, 49: 1222–1228..

    Article  PubMed  CAS  Google Scholar 

  63. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996, 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  64. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 1990, 258: C755–C786.

    PubMed  CAS  Google Scholar 

  65. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gómez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 1996, 183: 1533–44.

    Article  PubMed  CAS  Google Scholar 

  66. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in xenopus egg extracts: inhibition by bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 1994, 79: 353–64.

    Article  PubMed  CAS  Google Scholar 

  67. Rutter GA, Theler JM, Murgia M, Wollheim CB, Pozzan T, Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem 1993, 268: 22,385–22,390.

    PubMed  CAS  Google Scholar 

  68. Kiedrowski L, Costa E. Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering. Mol Pharmacol 1995, 47: 140–147.

    PubMed  CAS  Google Scholar 

  69. Garthwaite G, Garthwaite J. Amino acid neurotoxicity: intracellular sites of calcium accumulation associated with the onset of irreversible damage to rat cerebellar neurones in vitro. Neurosci Lett 1986, 71: 53–58.

    Article  PubMed  CAS  Google Scholar 

  70. Simon, R. P., Griffiths T, Evan MC, Swan JH, Meldrum BS. Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopic study in the rat. J Cerebr Blood Flow Metabol 1984, 4: 350–361.

    Article  CAS  Google Scholar 

  71. Reynolds IJ, Hastings TG. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptors activation. J Neurosci 1995, 15: 3318–3327.

    PubMed  CAS  Google Scholar 

  72. Dykens JA. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 1994, 63: 584–591.

    Article  PubMed  CAS  Google Scholar 

  73. Ghosh A, Greenberg ME. Calcium signalling in neurons: molecular mechanisms and cellular consequences. Science 1995, 268: 239–247.

    Article  PubMed  CAS  Google Scholar 

  74. Tingley WG, Roche KW, Thompson AK, Huganir RL. Regulation of NMDA receptor phos-phorylation by alternative splicing of the C-terminal domain. Nature 11993, 364: 70–73.

    Google Scholar 

  75. Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 1989, 36: 106–112.

    PubMed  CAS  Google Scholar 

  76. Snyder SH, Sabatini DM. Immunophilins and the nervous system. Nature Med 1995, 1: 32–37.

    Article  PubMed  CAS  Google Scholar 

  77. Wang YT, Salter MW. Regulation of NMDA receptors by tyrosine kinases and phos-phatases. Nature 1994, 369: 233–235.

    Article  PubMed  CAS  Google Scholar 

  78. Tong G, Shepherd D, Jahr CE. Synaptic desensitization of NMDA receptors by cal-cineurin. Science 1995, 267: 1510–1512.

    Article  PubMed  CAS  Google Scholar 

  79. Lieberman DN, Mody I. Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 1994, 369: 235–239.

    Article  PubMed  CAS  Google Scholar 

  80. Marcaida G, Kosenko E, Minana MD, Grisolia S, Felipo V. Glutamate induces a cal-cineurin-mediated dephosphorylation of Na+, K+-ATPase that results in its activation in cerebellar neurons in culture. J Neurochem 1996, 66: 99–104.

    Article  PubMed  CAS  Google Scholar 

  81. Sharkey J, Butcher SP. Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia. Nature 1994, 371: 336–339.

    Article  PubMed  CAS  Google Scholar 

  82. Dawson TM, Steiner JP, Dawson VL, Dinerman JL, Uhl GR, Snyder SH. Immunosup-pressant FK 506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity. Proc Natl Acad Sci USA 1993, 90: 9808–9812.

    Article  PubMed  CAS  Google Scholar 

  83. Morgan JI, Curran T. Role of ion flux in the control of c-fos expression. Nature 1986, 322: 552–55.

    Article  PubMed  CAS  Google Scholar 

  84. Gorman AM, Scott MP, Rumsby PC, Meredith C, Griffiths R. Excitatory amino acid-induced cytotoxicity in primary cultures of mouse cerebellar granule cells correlates with elevated, sustained c-fos protooncogene expression. Neurosci Lett 1995, 191: 116–120.

    Article  PubMed  CAS  Google Scholar 

  85. Smeyne RJ, Vendrell M, Hayward M, Baker SJ, Miao GG, Schilling K, Robertson LM, Curran T, Morgan JI. Continuous c-fos expression precedes programmed cell death in vivo. Nature 1993, 363: 166–169.

    Article  PubMed  CAS  Google Scholar 

  86. Bading H, Ginty DD, Greenberg ME. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 1993, 260: 181–186.

    Article  PubMed  CAS  Google Scholar 

  87. Fesus L, Thomazy V, Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 1987, 224: 104–108.

    Article  PubMed  CAS  Google Scholar 

  88. Piacentini M, Annicchiarico-Petruzzelli M, Oliverio S, Piredda L, Biedler JL, Melino G. Phenotype-specific “tissue” transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 1992, 52: 271–278.

    Article  PubMed  CAS  Google Scholar 

  89. Melino G, Annicchiarico-Petruzzelli M, Piredda L, Candi E, Gentile V, Davies PJA, Piacentini M. Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells. Mol Cell Biol 1994, 14: 6584–6596.

    PubMed  CAS  Google Scholar 

  90. Mattson MP, Barger SW, Begley JG, Mark RJ. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Meth Cell Biol 1995, 46: 187–216.

    Article  CAS  Google Scholar 

  91. Lee KS, Frank S, Vanderklish P, Arai A, Lynch G. Inhibition of proteolysis protects hippocampal neurons from ischemia. Proc Natl Acad Sci USA 1991, 88: 7233–7237.

    Article  PubMed  CAS  Google Scholar 

  92. Rosenmund C, Westbrook GL. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 1993, 10: 805–814.

    Article  PubMed  CAS  Google Scholar 

  93. Furukawa K, Mattson MP. Cytochalasins protect hippocampal neurons against amyloid beta-peptide toxicity: evidence that actin depolymerization suppresses Ca2+ influx. J Neurochem 1995, 65: 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  94. Bonfoco E, Ceccatelli S, Manzo L, Nicotera P. Colchicine induces apoptosis in cerebellar granule cells. Exp Cell Res 1995, 218: 189.

    Article  PubMed  CAS  Google Scholar 

  95. Nicotera P, Rossi A. Molecular mechanisms of metal neurotoxicity. J Trace Elem Electrolytes Health Dis 1993, 7: 254–256.

    PubMed  CAS  Google Scholar 

  96. Viviani B, Rossi AD, Chow SC, Nicotera P. Organotin compounds induce Ca2+ overload and apoptosis in PC12 cells. Neuro Toxicol 1995, 16: 19–26.

    CAS  Google Scholar 

  97. Rossi AD, Larsson O, Manzo L, Orrenius S, Vather M, Berggren PO, Nicotera P. Modification of Ca2+ signaling by inorganic mercury in PC12 cells. FASEB J 1993, 7: 1507–1514.

    PubMed  CAS  Google Scholar 

  98. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. New Engl J Med 1994, 330: 613–622.

    Article  PubMed  CAS  Google Scholar 

  99. Brenneman DE, Westbrook GL, Fitzgerald SP, Ennist DL, Elkins KL, Ruff MR, Pert CB. Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 1988, 335: 639–642.

    Article  PubMed  CAS  Google Scholar 

  100. Müller WEG, Schröder HC, Ushijima H, Dapper J, Bormann J: gpl20 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine. Eur J Pharmacol 1992, 226: 209–214.

    Article  PubMed  Google Scholar 

  101. Bagetta G, Corasaniti T, Berliocchi L, Navarra M, Finazzi-Agró A, Nisticó G. HIV-1 gp120 produces DNA fragmentation in the cerebral cortex of rat. Biochem Biophys Res Comm 1995, 211: 130–136.

    Article  PubMed  CAS  Google Scholar 

  102. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gpl20 in trans-genic mice. Nature 1994, 367: 188–1193.

    Article  PubMed  CAS  Google Scholar 

  103. Lipton SA. Models of neuronal injury in AIDS: another role for the NMDA receptor? TINS 1992, 15: 75–79.

    PubMed  CAS  Google Scholar 

  104. Lipton SA, Sucher NJ, Kaiser PK, Dreyer EB. Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity. Neuron 1991, 7: 111–118.

    Article  PubMed  CAS  Google Scholar 

  105. Lipton SA: 7-Chlorokynurenate ameliorates neuronal injury mediated by HIV envelope protein gpl20 in rodent retinal cultures. Eur J Neurosci 1992, 4: 1411–1415.

    Article  PubMed  Google Scholar 

  106. Giulian D, Vaca K, Noonan CA. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 1990, 250: 1593–1596.

    Article  PubMed  CAS  Google Scholar 

  107. Choi DW. Bench to bedside: the glutamate connection. Science 1992, 258: 241–243.

    Article  PubMed  CAS  Google Scholar 

  108. Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. TiPS 1990, 11: 379–387.

    PubMed  CAS  Google Scholar 

  109. Bullock R. Strategies for neuroprotection with glutamate antagonists. Extrapolating from evidence taken from the first stroke and head injury studies. Ann N Y Acad Sci 1995, 765: 272–278.

    Article  PubMed  CAS  Google Scholar 

  110. Myseros JS, Bullock R. The rationale for glutamate antagonists in the treatment of traumatic brain injury. Ann N Y Acad Sci 1995, 765: 262–271.

    Article  PubMed  CAS  Google Scholar 

  111. Ishimaru H, Katoh A, Suzuki H, Fukuta T, Kameyama T, Nabeshima T. Effects of N-methyl-D-aspartate receptor antagonists on carbon monoxide-induced brain damage in mice. J Pharmacol Exp Therapeutics 1992, 261: 349–352.

    CAS  Google Scholar 

  112. Novelli A, Reilly JA, Lysko PG, Henneberry RC. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988, 451: 205–212.

    Article  PubMed  CAS  Google Scholar 

  113. Bullock R, Zauner A, Myseros JS, Marmarou A, Woodward JJ, Young HF. Evidence for prolonged release of excitatory amino acid in severe human head trauma: Relationship to clinical events. Ann NY Acad Sci 1995, 765: 290–297.

    Article  PubMed  CAS  Google Scholar 

  114. Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 1984, 4: 1884–1891.

    PubMed  CAS  Google Scholar 

  115. Sandberg M, Butcher SP, Hagberg H. Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 1986, 47: 178–184.

    Article  PubMed  CAS  Google Scholar 

  116. Drejer J, Beneviste H, Diemer NH, Schousboe A. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro. J Neurochem 1985, 45: 145–151.

    Article  PubMed  CAS  Google Scholar 

  117. Beneviste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 1984, 43: 1369–1374.

    Article  Google Scholar 

  118. Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 1991, 7: 1031–1041.

    Article  PubMed  CAS  Google Scholar 

  119. Cheng B, Mattson MP. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemie damage. J Neurosci 1992, 12: 1558–1566.

    PubMed  CAS  Google Scholar 

  120. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994, 12: 139–153.

    Article  PubMed  CAS  Google Scholar 

  121. Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-D-aspartate antagonist. Science 1985, 230: 681–683.

    Article  PubMed  CAS  Google Scholar 

  122. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl PW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16: 576–586.

    Article  Google Scholar 

  123. Olney JW. Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J Neuropathol Exp Neurol 1969, 28: 455–474.

    Article  PubMed  CAS  Google Scholar 

  124. Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 1957, 58: 193–201.

    Article  CAS  Google Scholar 

  125. Rothman SM. Synaptic activity mediates death of hypoxic neurons. Science 1983, 220: 536–537.

    Article  PubMed  CAS  Google Scholar 

  126. Dubinsky JM. Examination of the role of calcium in neuronal death. Ann NY Acad Sci 1992, 679: 34.

    Article  Google Scholar 

  127. Michaels RL, Rothman SM. Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations. J Neurosci 1990, 10: 283–292.

    PubMed  CAS  Google Scholar 

  128. Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H, Yoo H, Inturrisi CE, Reis DJ. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischemia infarctions. Nature 1993, 363: 260–263.

    Article  PubMed  CAS  Google Scholar 

  129. Buchan A, Li H, Pulsinelli WA. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci 1991, 11: 1049–1056.

    PubMed  CAS  Google Scholar 

  130. Buchan A, Pulsinelli WA. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 1990, 10: 311–316.

    PubMed  CAS  Google Scholar 

  131. Murphy SN, Miller RJ. Two distinct quisqualate receptors regulate Ca2+ homeostasts in hippocampal neurons in vitro. Mol Pharmacol 1989, 35: 671–680.

    PubMed  CAS  Google Scholar 

  132. Courtney MJ, Lambert JJ, Nicholls DG. The interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells. J Neurosci 1990, 10: 3873–3879.

    PubMed  CAS  Google Scholar 

  133. Murphy SN, Miller RJ. Regulation of Ca2+ influx intro strital neurons by kainic acid. J Pharmacol Exp Therap 1989, 249: 184–193.

    CAS  Google Scholar 

  134. Frandsen A, Drejer J, Schousboe A. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-D-aspartate (NMDA) as well as non-NMDA receptors. J Neurochem 1989, 53: 297–299.

    Article  PubMed  CAS  Google Scholar 

  135. Cox JA, Felder CC, Henneberry RC. Differential expression of excitatory amino acid receptor subtypes in cultured cerebellar neurons. Neuron 1990, 4: 941–947.

    Article  PubMed  CAS  Google Scholar 

  136. Milani D, Guidolin D, Facci L, Pozzan T, Buso M, Leon A, Skaper SD. Excitatory amino acid-induced alterations of cytoplasmic free Ca2+ in individual cerebellar granule neurons: role in neurotoxicity. J Neurosci Res 1991, 28: 434–441.

    Article  PubMed  CAS  Google Scholar 

  137. Marcaida G, Minana MD, Grisolla S, Felipo V. Lack of correlation between glutamate-induced depletion of ATP and neuronal death in primary cultures of cerebellum. Brain Res 1995, 695: 146–150.

    Article  PubMed  CAS  Google Scholar 

  138. Mattson MP, Guthrie PB, Hayes BC, Kater SB. Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 1989, 9: 1223–1232.

    PubMed  CAS  Google Scholar 

  139. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992, 256: 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  140. Ratan RR, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 1994, 62: 376–379.

    Article  PubMed  CAS  Google Scholar 

  141. Bührle CP, Sonnhof U. The ionic mechanism of the excitatory action of glutamate upon the membranes of motoneurones of the frog. Pflügers Arch 1983, 396: 154–62.

    Article  PubMed  Google Scholar 

  142. Verkhratsky A, Shmigol A. Calcium-induced calcium release in neurons. Cell Calcium 1996, 19: 1–14.

    Article  PubMed  CAS  Google Scholar 

  143. Choi DW. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 1995, 18: 58–60.

    Article  PubMed  CAS  Google Scholar 

  144. Dienel GA. Regional accumulation of calcium in postischemic rat brain. J Neurochem 1984, 43: 913–925.

    Article  PubMed  CAS  Google Scholar 

  145. Kass IS, Lipton P. Calcium and long-term transmission damage following anoxia in dentate gyrus and CA1 regions of the rat hippocampal slice. J Physiol 1986, 378: 313–334.

    PubMed  CAS  Google Scholar 

  146. Mogensen HS, Hack N, Balázs R, Jorgensen OS. The survival of cultured mouse cerebellar granule cells is not dependent on elevated potassium-ion concentration. Int J Dev Neurosci 1994, 12: 451–460.

    Article  PubMed  CAS  Google Scholar 

  147. Wroblewski JT, Nicoletti F, Costa E. Different coupling of excitatory amino acid receptors with Ca2+ channels in primary cultures of cerebellar granule cells. Neuropharmacol 1985, 24: 919–921.

    Article  CAS  Google Scholar 

  148. Tymianski M, Charlton MP, Carlen PL, Tator CH. Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 1993, 13: 2085–2104.

    PubMed  CAS  Google Scholar 

  149. De Erausquin GA, Hanev H, Guidotti A, Costa E, Brooker G. Gangliosides normalize distorted single-cell intracellular free Ca2+ dynamics after toxic doses of glutamate in cerebellar granule cells. Proc Natl Acad Sci USA 1990, 87: 8017–8021.

    Article  PubMed  Google Scholar 

  150. Dubinsky JM, Rothman SM. Intracellular calcium concentrations during “chemical hypoxia” and excitotoxic neuronal injury. J Neurosci 1991, 11: 2545–2551.

    PubMed  CAS  Google Scholar 

  151. Murphy SN, Thayer SA, Miller RJ. The effects of excitatory amino acid on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci 1987, 7: 4145–4158.

    PubMed  CAS  Google Scholar 

  152. Dubinsky JM. Intracellular calcium levels during the period of delayed excitotoxicity. J Neurosci 1993, 13: 623–631.

    PubMed  CAS  Google Scholar 

  153. Kristián T, Katsura KI, Gidö G, Siesjö BK. The influence of pH on cellular calcium influx during ischemia. Brain Res 1994, 641: 295–302.

    Article  PubMed  Google Scholar 

  154. Marciani MG, Louvel J, Heinemann U. Aspartate-induced changes in extracellular free calcium in ‘in vitro’ hippocampal slices of rats. Brain Res 1982, 238: 272–277.

    Article  PubMed  CAS  Google Scholar 

  155. Garthwaite G, Garthwaite J. Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Letters 1986, 66: 193–198.

    Article  CAS  Google Scholar 

  156. Rothman SM, Thurston JH, Hauhart RE. Delayed neurotoxicity of excitatory amino acids in vitro. Neurosci 1987, 22: 471–480.

    Article  CAS  Google Scholar 

  157. Tymianski M, Wallace MC, Spigelman I, Uno M, Carlen PL, Tator CH, Charlton MP. Cell-permanent Ca2+ chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron 1993, 11: 221–235.

    Article  PubMed  CAS  Google Scholar 

  158. Randall RD, Thayer SA. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 1992, 12: 1882–1895.

    PubMed  CAS  Google Scholar 

  159. Connor JA, Wadman WJ, Hockberger PE, Wong RKS. Sustained dentritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. Science 1988, 240: 649–653.

    Article  PubMed  CAS  Google Scholar 

  160. Ehlers MD, Zhang S, Bernhardt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 1996, 84: 745–755.

    Article  PubMed  CAS  Google Scholar 

  161. Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988, 1: 623–634.

    Article  PubMed  CAS  Google Scholar 

  162. Levi G, Aloisi F, Ciotti MT, Gallo V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res 1984, 290: 77–86.

    Article  PubMed  CAS  Google Scholar 

  163. Gallo V, Ciotti MT, Coletti A, Aloisi F, Levi G. Selective release of glutamate from cerebellar granule cells differentiating in culture. Proc Natl Acad Sci USA 1982, 79: 7919–7923.

    Article  PubMed  CAS  Google Scholar 

  164. Monyer H, Giffard RG, Hartley DM, Dugan LL, Goldberg MP, Choi DW. Oxygen or glucose deprivation-induced neuronal injury in cortical cell cultures is reduced by tetanus toxin. Neuron 1992, 8: 967–973.

    Article  PubMed  CAS  Google Scholar 

  165. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintowsky VL, Rydel RE. Beta-amyloid protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 1993, 16: 409–414.

    Article  PubMed  CAS  Google Scholar 

  166. Smale G, Nichols NR, Brady DR, Finch CE, Horton WE Jr. Evidence for apoptotic cell death in alzheimer’s disease. Exp Neurol 1995, 133: 225–230.

    Article  PubMed  CAS  Google Scholar 

  167. Forloni G, Chiesa R, Smiroldo S, Verga L, Salmona M, Tagliavini F, Angeretti N. Apop-tosis mediated neurotoxicity induced by chronic application of beta-amyloid fragment 25–35. Neuroreport 1993, 4: 523–526.

    Article  PubMed  CAS  Google Scholar 

  168. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993, 13: 1676–1687.

    PubMed  CAS  Google Scholar 

  169. Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M, Appel SH. Cell death induced by beta-amyloid 1–40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res 1995, 686: 49–60.

    Article  PubMed  CAS  Google Scholar 

  170. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 1990, 2: 105–117.

    Article  Google Scholar 

  171. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. Beta-amyloid pep-tides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992, bd12: 376–389.

    Google Scholar 

  172. Mattson MP, Tomaselli KJ, Rydel RE. Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res 1993, 621: 35–49.

    Article  PubMed  CAS  Google Scholar 

  173. Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factor alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappaB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Soc USA 1995, 92: 9328–9332.

    Article  CAS  Google Scholar 

  174. Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996, 379: 74.

    Article  PubMed  CAS  Google Scholar 

  175. Goodman Y, Mattson MP. Secreted forms of beta-amyloid precursor protein protect hippocampal neurons against amyloid beta-peptide-induced oxidative injury. Exp Neurol 1994, 128: 1–12.

    Article  PubMed  CAS  Google Scholar 

  176. Mattson MP, Cheng B, Culwell AR, Esch FS, Lieberburg I, Rydel RE. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron 1993, 10: 243–254.

    Article  PubMed  CAS  Google Scholar 

  177. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980, 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  178. Bonfoco E, Krainc D, Ankarcrona M., Nicotera, P, Lipton SA. Apoptosis and necrosis: two distinct events induced respectively by mild and intense insults with NMDA or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 1995, 92: 72,162–72,166.

    Article  Google Scholar 

  179. Li Y, Sharov VG, Jiang N, Zaloga C, Sabbah HN, Chopp M. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 1995, 146: 1045–1051.

    PubMed  CAS  Google Scholar 

  180. Charriaut-Marlangue C, Margaill I, Walsh RJ, Plotkine M, Ben-Ari Y. NG-nitro L-Arginine methylester (L-NAME) reduces cortical infarct and necrotic damage but not apoptotic cell loss. Soc Neurosci Abstr 1995, 21: 998.

    Google Scholar 

  181. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995, 15: 961–973.

    Article  PubMed  CAS  Google Scholar 

  182. Chou CC, Lam CY, Yung BYM. Intracellular ATP is required for actinomycin D-induced apoptotic cell death in HeLa cells. Cancer Lett 1995, 96: 181–187.

    Article  PubMed  CAS  Google Scholar 

  183. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV. Complex I Inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem 1994, 63: 1987–1990.

    Article  PubMed  CAS  Google Scholar 

  184. Hajos F, Garthwaite G, Garthwaite J. Reversible and irreversible neuronal damage caused by excitatory amino acid analogues in rat cerebellar slices. Neurosci 1986, 18: 417–436.

    Article  CAS  Google Scholar 

  185. Mills JC, Nelson D, Erecinska M, Pittman RN. Metabolic and energetic changes during apoptosis in neural cells. J Neurochem 1995, 65: 1721–1730.

    Article  PubMed  CAS  Google Scholar 

  186. Koh JY, Suh SW, Gwang BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 1996, 272: 1013–1016.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leist, M., Nicotera, P. (1999). Calcium and Cell Death. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics