Skip to main content

Abstract

The amphetamines are drugs of abuse that are presently seeing a significant resurgence. In California, it has been suggested that methamphetamine (METH) will surpass cocaine as the preferential drug of abuse. This might be related to the relative ease of its synthesis and the focus of government agencies on cocaine. Unlike cocaine, the amphetamines are, however, known causes of major neurotoxic damage to mammalian monoaminergic systems (1–3) For example, METH depletes dopamine (DA) and its metabolites (1,2,4,5), depletes DA uptake sites (1,6) and causes marked decreases in tyrosine hydroxylase (TH) activity in the nigrostriatal DA system. METH can also cause significant alterations in the serotonin (5-HT) system depending on the doses of the drug used in the experiments. In contrast to the effects of METH, another closely related analog, methyldioxymethamphetamine (MDMA, “ecstasy”) exerts most of its effects on the serotoninergic system of most mammals (including humans) except in mice, where MDMA affects mainly the dopaminergic system (2,7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ricaurte GA, Schuster CR, Seiden LS. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: regional study. Brain Res 1980, 193: 153–163.

    Article  PubMed  CAS  Google Scholar 

  2. O’Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1994, 270: 741–751.

    PubMed  Google Scholar 

  3. Steranka LR, Sanders-Bush E. Long-term effects of continuous exposure to amphetamine in brain dopamine concentration and synaptosomal uptake in mice. Eur J Pharmacol 1980, 65: 439–443.

    Article  PubMed  CAS  Google Scholar 

  4. Cadet JL., Ladenheim B, Baum I, Carlson E, Epstein C. CuZn-superoxide dismutase (CuZnSOD) transgenic mice show resistance to the lethal effects of methylenedioxyamphetamine (MDA) and methylenedioxymethamphetaine (MDMA). Brain Res 1994a, 655: 259–262.

    Article  PubMed  CAS  Google Scholar 

  5. Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J. Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 1980, 181: 151–160.

    Article  PubMed  CAS  Google Scholar 

  6. Nakayama M, Koyama T, Yamashita I. Long-lasting decreases in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res 1992, 601: 209–212.

    Article  Google Scholar 

  7. Cadet JL, Ladenheim B, Hirata H, Rothman RB, Ali RB, Carlson E, Epstein C, Moran TH. Superoxide radicals mediate the biochemical effects of methylendioxymethamphetamine (MDMA): evidence from using CuZn-superoxide transgenic mice. Synapse 1995, 21: 169–175.

    Article  PubMed  CAS  Google Scholar 

  8. Marshall JF, O’Dell SJ, Weihmuller FB. Dopamine-glutamate interactions in methaphetamine-induced neurotoxicity. J Neural Transm 1993, 91: 241–254.

    Article  CAS  Google Scholar 

  9. Cadet JL. A unifying hypothesis of movement and madness: involvement of free radicals in disorders of the isodendritic core. Med Hypotheses 1988, 27: 87–94.

    Article  Google Scholar 

  10. Cohen G, Heikkila RE. The generation of hydrogen peroxide, Superoxide radical and hydroxyl radical by hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 1974, 249: 2447–2452.

    PubMed  CAS  Google Scholar 

  11. De Vito MJ, Wagner GC Methamphetamine-induced neuronal damage: A possible role for free radicals. Neuropharmacology 1989, 28: 1145–1150.

    Article  PubMed  Google Scholar 

  12. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  13. Dawson VL, Dawson TM, Bartley DA, Uhi GR, Snyder SH Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993, 13: 2651–2661.

    PubMed  CAS  Google Scholar 

  14. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991, 43: 109–142.

    PubMed  CAS  Google Scholar 

  15. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992, 6: 3051–3064.

    PubMed  CAS  Google Scholar 

  16. Beckman JS. The double-edged role of nitric oxide in brain and superoxide-mediated injury. J Develop Physiol 1991, 15: 53–59.

    CAS  Google Scholar 

  17. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 1991, 288: 481–487.

    Article  PubMed  CAS  Google Scholar 

  18. Sheng P, Cerutti C, Cadet JL. Methamphetamine (METH) causes reactive gliosis in vitro: attenuation by the ADP-ribosylation (ADPR) inhibitor, benzamide. Life Sciences 1994, 55: 51–54.

    Article  Google Scholar 

  19. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG. Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 1986a, 77: 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  20. Schraufstatter JU, Hyslop PA, Minshaw DB, Spragg RG, Sklar LA, Cochrane CG. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly (ADP-ribose) polymerase. Proc Natl Acad Sci USA 1986b, 83: 4908–4912.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-Ribose) synthetase in neurotoxicity. Science 1994, 263: 687–689.

    Article  PubMed  CAS  Google Scholar 

  22. Hirata H, Cadet JL. P53 knockout mice are protected against the longterm effects of methamphetamine on dopaminergic terminals and cell bodies. J Neuro chem 1997, 69: 780–790.

    CAS  Google Scholar 

  23. Cadet JL, Ordonez SV, Ordonez JV. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2. Synapse 1997, 25: 176–184.

    Article  PubMed  CAS  Google Scholar 

  24. Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, et al. Transgenic mice with increased CuZn-superoxide dismutase activity: Animal model of dosage effects in Down Syndrome. Proc Natl Acad Sci USA 1997, 84: 8044–8048.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cadet, J.L. (1999). Neurotoxicity of Drugs of Abuse. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_26

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics