Skip to main content

Asynchronous Death as a Characteristic Feature of Apoptosis

  • Chapter
Cell Death and Diseases of the Nervous System

Abstract

A basic feature of programmed cell death/apoptosis in vivo is that cells within a population die at very different times even following an apparently identical signal to die. Nowhere is this more obvious than in the developing nervous system where neurons in the same population often die over several days. In fact, “naturally occurring” cell death in the developing nervous system was overlooked for a long time because of its sporadic asynchronous nature and the relatively short period of time cells show morphological signs of death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988, 106: 829–844.

    Article  PubMed  CAS  Google Scholar 

  2. Edwards SN, Tolkovsky AM. Characterization of apoptosis in cultured rat sympathetic neurons after nerve growth factor withdrawal. J Cell Biol 1994, 124: 537–546.

    Article  PubMed  CAS  Google Scholar 

  3. Wyllie AH, Kerr JFR, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980, 68: 251–307.

    Article  PubMed  CAS  Google Scholar 

  4. Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 1975, 160: 535–546.

    Article  PubMed  CAS  Google Scholar 

  5. Oppenheim RW. Neuronal cell death and some related regressive phenomena during neurogenesis: A selective historical review and progress report, in Studies in Developmental Neurobiology: Essays in Honor of Viktor Hamburger (Cowan WM, ed.), Oxford University Press, New York, 1981, pp. 74–133.

    Google Scholar 

  6. Earnshaw WC. Nuclear changes in apoptosis. Cur Opin Cell Biol 1995, 7: 337–343.

    Article  CAS  Google Scholar 

  7. Rukenstein A, Rydel R, Greene L. Multiple agents rescue PC12 cells from serum-free cell death by translation-transcription-independent mechanisms. J Neurosci 1991, 11: 2552–2563.

    PubMed  CAS  Google Scholar 

  8. Mesner P, Winters T, Green SH. NGF withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J Cell Biol 1992, 119: 1669–1680.

    Article  PubMed  CAS  Google Scholar 

  9. Pittman RN, Wang S, DiBenedetto AJ, Mills JC. A system for characterizing cellular and molecular events in programmed neuronal cell death. J Neurosci 1993, 13: 3669–3680.

    PubMed  CAS  Google Scholar 

  10. Messam CA, Pittman RN. Dynamic morphological changes and increases in intracellular free calcium during apoptosis of PC 12 cells (submitted).

    Google Scholar 

  11. Mills JC, Lee, VM-Y, Pittman RN. Dephosphorylation of t protein characterizes onset of the active phase of apoptosis (submitted).

    Google Scholar 

  12. Kerr JFR, Harmon B, Searle J. An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibres. J Cell Sci 1974, 14: 571–585.

    PubMed  CAS  Google Scholar 

  13. Chu-Wang IW, Oppenheim RW. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally-occurring and induced cell loss during development. J Comp Neurol 1978, 177: 33–58.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke PGH. Developmental cell death: Morphological diversity and multiple mechanisms. Anat Embryol 1990, 181: 195–213.

    Article  PubMed  CAS  Google Scholar 

  15. Evan G, Wyllie A, Gilbert C, Littlewood T, Land H, Brooks M, Waters C, Penn L, Hancock D. Induction of apoptosis in fibroblasts by c-Myc protein. Cell 1992, 69: 119–128.

    Article  PubMed  CAS  Google Scholar 

  16. Fisher DE. Apoptosis in cancer therapy: Crossing the threshold. Cell 1994, 78: 539–542.

    Article  PubMed  CAS  Google Scholar 

  17. DiBenedetto AJ, Pittman RN. Death in the balance. Persp Dev Neurobiol 1995, 3: 109–117.

    Google Scholar 

  18. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 270: 1326–1331.

    Article  PubMed  CAS  Google Scholar 

  19. Wang S, Pittman RN. Altered protein binding to the octamer motif appears to be an early event in programmed neuronal cell death. Proc Natl Acad Sci USA 1993, 90: 10,385–10,389.

    Article  PubMed  CAS  Google Scholar 

  20. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM. Altered gene expression in neurons during programmed cell death: Identification of c-jun as necessary for neuronal apoptosis. J Cell Biol 1994, 127: 1717–1727.

    Article  PubMed  CAS  Google Scholar 

  21. Ham J, Babij C, Whitfield J, Pfarr CM, Lallemand D, Yaniv M, Rubin LL. A c-jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 1995, 14: 927–939.

    Article  PubMed  CAS  Google Scholar 

  22. Greenlund LJS, Deckwerth TL, Johnson EM. Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death. Neuron 1995, 14: 303–315.

    Article  PubMed  CAS  Google Scholar 

  23. Mills JC, Nelson D, Erecinska M, Pittman RN. Metabolic and energetic changes during apoptosis in neural cells. J Neurochem 1995, 65: 1721–1730.

    Article  PubMed  CAS  Google Scholar 

  24. Mesner PW, Epting CL, Hegarty JL, Green SH. A timetable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. J Neurosci 1995, 15: 7357–7366.

    PubMed  CAS  Google Scholar 

  25. Smith JA, Martin L. Do cells cycle? Proc Natl Acad Sci USA 1973, 70: 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  26. Shields R, Smith JA. Cells regulate their proliferation through alterations in transition probability. J Cell Physiol 1977, 91: 345–356.

    Article  PubMed  CAS  Google Scholar 

  27. Skehan P. Control models of cell cycle transit, exit, and arrest. Biochem Cell Biol 1988, 66: 467–477.

    Article  PubMed  CAS  Google Scholar 

  28. Grasman J. A deterministic model of the cell cycle. Bull Math Biol 1990, 52: 535–547.

    PubMed  CAS  Google Scholar 

  29. Lazebnik YA, Cole S, Cooke CA, Nelson WG, Earnshaw WC. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J Cell Biol 1993, 123: 7–22.

    Article  PubMed  CAS  Google Scholar 

  30. Solary E, Bertrand R, Kohn KW, Pommier Y. Differential induction of apoptosis in undif-ferentiated and differentiated HL-60 cells by DNA topoisomerase I and II inhibitors. Blood 1993, 81: 1359–1368.

    PubMed  CAS  Google Scholar 

  31. Bertrand R, Solary E, O’Conner P, Kohn KW, Pommier Y. Induction of a common pathway of apoptosis by staurosporin. Exp Cell Res 1994, 211: 314–321.

    Article  PubMed  CAS  Google Scholar 

  32. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. prICE, an ICE-like protease from apoptotic cells, cleaves poly (ADP-ribose) polymerase. Nature 1994, 371: 346–347.

    Article  PubMed  CAS  Google Scholar 

  33. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic feature of apoptotic cell death. J Biol Chem 1994, 269: 30,757-30,760.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pittman, R.N., Messam, C.A., Mills, J.C. (1999). Asynchronous Death as a Characteristic Feature of Apoptosis. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics