Skip to main content

Mechanisms of Cell Injury in Prion Diseases

  • Chapter
Cell Death and Diseases of the Nervous System
  • 185 Accesses

Abstract

Transmissible spongiform encephalopathies (TSE) are associated with the progressive destruction of neural systems involved in cognition and movement. Gene targeting and transgenic strategies have provided strong evidence for the central role of the prion protein in the transmission and pathogenesis of TSEs, now termed prion diseases, and have begun to be used to examine the mechanisms by which the formation of conformationally altered prion proteins cause cell dysfunction and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF. Molecular analysis of prion strain variation and the aetiology of “new variant” CJD. Nature 1996, 383: 685–690.

    Article  PubMed  CAS  Google Scholar 

  2. Aylin P, Rooney C, Drever F, Coleman M. Increasing mortality from Creutzfeldt-Jakob disease in England and Wales since 1979: ascertainment bias from increase in postmortems? Popul Trends 1996, 85: 34–38.

    PubMed  Google Scholar 

  3. Nathanson N, Wilesmith J, Griot C. Bovine spongiform encephalopathy (BSE): Causes and consequences of a common source epidemic. Am J Epidemiol 1997, 145: 959–969.

    Article  PubMed  CAS  Google Scholar 

  4. Gajdusek DC, Gibbs CJ, Jr., Alpers M. Experimental transmission of a kuru-like syndrome to chimpanzees. Nature 1966, 209: 794–797.

    Article  PubMed  CAS  Google Scholar 

  5. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216: 136–144.

    Article  PubMed  CAS  Google Scholar 

  6. Prusiner SB, McKinley MP, Groth DF, Bowman KA, Mock NI, Cochran SP, Masiarz FR. Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci USA 1981, 78: 6675–6679.

    Article  PubMed  CAS  Google Scholar 

  7. Prusiner SB, Groth DF, Bolton DC, Kent SB, Hood LE. Purification and structural studies of a major scrapie prion protein. Cell 1984, 38: 127–134.

    Article  PubMed  CAS  Google Scholar 

  8. Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SBH, Abersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985, 40: 735–746.

    Article  PubMed  CAS  Google Scholar 

  9. Basier K, Oesch B, Scott M, Westaway D, Wächli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986, 46: 417–428.

    Article  Google Scholar 

  10. BüH, Aguzzi A, Sailer A, Greiner R-A, Autenried P, Aguet M, Weissmann C. Mice devoid of PrP are resistant to scrapie. Cell 1993, 73: 1339–1347.

    Article  Google Scholar 

  11. Scott M, Foster D, Mirenda C, Serban D, Coufal F, Wälchli M, Torchia M, Groth D, Carlson G, DeArmond SJ, Westaway D, Prusiner SB. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 1989, 59: 847–857.

    Article  PubMed  CAS  Google Scholar 

  12. Scott M, Groth D, Foster D, Torchia M, Yang SL, DeArmond SJ, Prusiner SB. Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 1993, 73: 979–988.

    Article  PubMed  CAS  Google Scholar 

  13. Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 1990, 110: 743–752.

    Article  PubMed  CAS  Google Scholar 

  14. Taraboulos A, Raeber AJ, Borchelt DR, Serban D, Prusiner SB. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell 1992, 3: 851–863.

    PubMed  CAS  Google Scholar 

  15. Caughey B, Raymond GJ. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive. J Biol Chem 1991, 266: 18217–18223.

    PubMed  CAS  Google Scholar 

  16. Tatzelt J, Prusiner SB, Welch WJ. Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J 1996, 15: 6363–6373.

    PubMed  CAS  Google Scholar 

  17. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 1993, 32: 1993–2002.

    Article  Google Scholar 

  18. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, Prusiner SB. Conversion of-helices into-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 1993, 90: 10,962-10,966.

    Google Scholar 

  19. Huang Z, Gabriel JM, Baldwin MA, Fletterick RJ, Prusiner SB, Cohen FE. Proposed three-dimensional structure for the cellular prion protein. Proc Natl Acad Sci USA 1994, 91: 7139–7143.

    Article  PubMed  CAS  Google Scholar 

  20. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wilthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature 1996, 382: 180–182.

    Article  PubMed  CAS  Google Scholar 

  21. Hornemann S, Glockshuben R, Autonomous and reversible folding of soluble amino-terminally truncated segment of the mouse prion protein. J Mol Biol 1996, 261: 614–619.

    Article  PubMed  CAS  Google Scholar 

  22. Mehlhorn I, Groth D, Stockel J, Moffat B, Reilly D., Yansura D, Willett WS, Baldwin M, Fletterick R, Cohen FE, Vandlen R, Henner D, Prusiner SB. High-level expression and characterization of a purified 142-residue polypeptide of the prion protein. Biochemistry 1996, 35: 5528–5537.

    Article  PubMed  CAS  Google Scholar 

  23. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast saccharomyces cerevisiae. Genetics 1994, 137: 671–676.

    PubMed  CAS  Google Scholar 

  24. Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in saccharomyces cerevisiae. Science 1994, 264: 566–569.

    Article  PubMed  CAS  Google Scholar 

  25. Wickner RB, Masison DC, Edskes HK. [PSI] and [URE3] as yeast prions. Yeast 1995, 11: 1671–1685.

    Article  PubMed  CAS  Google Scholar 

  26. Lindquist S. Mad cows meet psi-chotic yeast: The expansion of the prion hypothesis. Cell 1997, 89: 495–498.

    Article  PubMed  CAS  Google Scholar 

  27. Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 1995, 270: 93–95.

    Article  PubMed  CAS  Google Scholar 

  28. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996, 15: 3127–3134.

    PubMed  CAS  Google Scholar 

  29. Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 1996, 273: 622–626.

    Article  PubMed  CAS  Google Scholar 

  30. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995, 268: 880–884.

    Article  PubMed  CAS  Google Scholar 

  31. Telling GC, Scott M, Mastrianni J, Gabizon R, Torchia M, Cohen FE, DeArmond SJ, Prusiner SB. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 1995, 83: 79–90.

    Article  PubMed  CAS  Google Scholar 

  32. Hsiao KK, Scott M, Foster D, Groth DF, DeArmond SJ, Prusiner SB. Spontaneous neuro-degeneration in transgenic mice with mutant prion protein. Science 1990, 250: 1587–1590.

    Article  PubMed  CAS  Google Scholar 

  33. Telling GC, Haga T, Torchia M, Tremblay P, DeArmond SJ, Prusiner SB. Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice. Genes Dev 1996, 10: 1736–1750.

    Article  PubMed  CAS  Google Scholar 

  34. Kocisko DA, Come JH, Priola SA, Chesebro B, Raymond GJ, Lansbury PT, Caughey B. Cell-free formation of protease-resistant prion protein. Nature 1994, 370: 471–474.

    Article  PubMed  CAS  Google Scholar 

  35. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT, Jr., Caughey B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: A model for the scrapie species barrier. Proc Natl Acad Sci USA 1995, 92: 3923–3927.

    Article  PubMed  CAS  Google Scholar 

  36. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 1995, 375: 698–700.

    Article  PubMed  CAS  Google Scholar 

  37. Telling GC, Scott M, Hsiao KK, Foster D, Yang SL, Torchia M, Sidle KCL, Collinge J, DeArmond SJ, Prusiner SB. Transmission of Creutzfeldt-Jakob disease from humans to transgenic mice expressing chimeric human-mouse prion protein. Proc Natl Acad Sci USA 1994, 91: 9936–9940.

    Article  PubMed  CAS  Google Scholar 

  38. Collinge J, Palmer MS, Sidle KCL, Hill AF, Gowland I, Meads J, Asante E, Bradley R, Doey LJ, Lantos PL. Unaltered susceptibility to BSE in transgenic mice expressing human prion protein. Nature 1995, 378: 779–783.

    Article  PubMed  CAS  Google Scholar 

  39. Prusiner SB, Hsiao KK. Human prion diseases. Ann Neurol 1994, 35: 385–395.

    Article  PubMed  CAS  Google Scholar 

  40. Prusiner SB. Prion diseases and the BSE crisis. Science, in press

    Google Scholar 

  41. Tateishi J, Kitamoto T. Inherited prion diseases and transmission to rodents. Brain Pathol 1995, 5: 53–59.

    Article  PubMed  CAS  Google Scholar 

  42. Monari L, Chen SG, Brown P, Parchi P, Petersen RB, Mikol J, Gray F, Cortelli P, Montagna P, Ghetti B, Goldfarb LG, Gajdusek DC, Lugaresi E, Gambetti P, Autilio-Gambetti L. Fatal familial insomnia and familial Creutzfeldt-Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci USA 1994, 91: 2839–2842.

    Article  PubMed  CAS  Google Scholar 

  43. Young K, Clark HB, Piccardo P, Dlouhy SR, Ghetti B. Gerstmann-Straussler-Scheinker disease with the PRNP P102L mutation and valine at codon 129. Mol Brain Res 1997, 44: 147–150.

    Article  PubMed  CAS  Google Scholar 

  44. LaPlanche JL, Delasnerie-Laupretre N, Brandel JP, Chatelain J, Beaudry P, Alperovitch A, Launay JM. Molecular genetics of prion diseases in France. French Research Group on Epidemiology of Human Spongiform Encephalopathies Neurology 1994, 44: 2347–2351.

    CAS  Google Scholar 

  45. Parchi P, Castellani R, Capellari S, Ghetti B, Young K, Chen SG, Farlow M, Dickson DW, Sima AAF, Trojanowski JQ, Petersen RB, Gambetti P. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996, 39: 767–778.

    Article  PubMed  CAS  Google Scholar 

  46. Schulzschaeffer WJ, Giese A, Windl O, Kretzschmar HA. Polymorphism at codon 129 of the prion protein gene determines cerebellar pathology in Creutzfeldt-Jakob disease. Clin Neuropathol 1996, 15: 353–357.

    CAS  Google Scholar 

  47. MacDonald ST, Sutherland K, Ironside JW. Prion protein genotype and pathological phenotype studies in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 1996, 22: 285–292.

    Article  PubMed  CAS  Google Scholar 

  48. Pickering-Brown SM, Mann DM, Owen F, Ironside JW, de Silva R, Roberts DA, Balderson DJ, Cooper PN. Allelic variations in apolipoprotein E and prion protein genotype related to plaque formation and age of onset in sporadic Creutzfeldt-Jakob disease. Neurosci Lett 1995, 187: 127–129.

    Article  PubMed  CAS  Google Scholar 

  49. Hsiao KK, Groth D, Scott M, Yang S-L, Serban H, Rapp D, Foster D, Torchia M, DeArmond SJ, Prusiner SB. Serial transmission in rodents in neurodegeneration from transgenic mice expressing mutant prion proteins. Proc Natl Acad Sci USA 1994, 91: 9126–9130.

    Article  PubMed  CAS  Google Scholar 

  50. McKinley MP, Meyer RK, Kenaga L, Rahbar F, Cotter R, Serban A, Prusiner SB. Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 1991, 65: 1340–1351.

    PubMed  CAS  Google Scholar 

  51. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F. Neurotoxicity of a prion protein fragment. Nature 1993, 362: 543–546.

    Article  PubMed  CAS  Google Scholar 

  52. Brown DR, Herms J, Kretzschmar HA. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 1994, 5: 2057–2060.

    Article  PubMed  CAS  Google Scholar 

  53. Kristensson K, Feuerstein B, Taraboulos A, Hyun WC, Prusiner SB, DeArmond SJ. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 1993, 43: 2335–2341.

    Article  PubMed  CAS  Google Scholar 

  54. Wong K, Qiu Y, Hyun W, Nixon R, VanCleff J, Sanchez-Salazar J, Prusiner SB, DeArmond SJ. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology 1996, 47: 741–750.

    Article  PubMed  CAS  Google Scholar 

  55. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 1996, 379: 339–343.

    Article  PubMed  CAS  Google Scholar 

  56. Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T. Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 1996, 380: 528–531.

    Article  PubMed  CAS  Google Scholar 

  57. Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994, 8: 121–127.

    Article  PubMed  CAS  Google Scholar 

  58. Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rü T, Moser M, Oesch B, McBride PA, Manson JC. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 1996, 380: 639–642.

    Article  PubMed  CAS  Google Scholar 

  59. Tobler I, Deboer T, Fischer M. Sleep and sleep regulation in normal and prion protein-deficient mice. J Neurosci 1997, 17: 1869–1879.

    PubMed  CAS  Google Scholar 

  60. Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR. Prion protein is necessary for normal synaptic function. Nature 1994, 370: 295–297.

    Article  PubMed  CAS  Google Scholar 

  61. Whittington MA, Sidle KCL, Gowland I, Meads J, Hill AF, Palmer MS, Jefferys JGR, Collinge J. Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nature Genetics 1995, 9: 197–201.

    Article  PubMed  CAS  Google Scholar 

  62. Lledo P-M, Tremblay P, DeArmond SJ, Prusiner SB, Nicoll RA. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci USA 1996, 93: 2403–2407.

    Article  PubMed  CAS  Google Scholar 

  63. Prusiner SB, Scott M, Foster D, Pan K-M, Groth D, Mirenda C, Torchia M, Yang S-L, Serban D, Carlson GA, Hoppe PC, Westaway D, DeArmond SJ. Transgenic studies implicate interactions between homologous PrP isoforms in scrape prion replication. Cell 1990, 63: 673–686.

    Article  PubMed  CAS  Google Scholar 

  64. Bueler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1994, 1: 19–30.

    PubMed  CAS  Google Scholar 

  65. Ironside JW, McCardle L, Hayward PA, Bell JE. Ubiquitin immunocytochemistry in human spongiform encephalopathies. Neuropathol Appl Neurobiol 1993, 19: 134–140.

    Article  PubMed  CAS  Google Scholar 

  66. Tatzelt J, Zuo J, Voellmy R, Scott M, Hartl U, Prusiner SB, Welch WJ. Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci USA 1995, 92: 2944–2948.

    Article  PubMed  CAS  Google Scholar 

  67. Diedrich JF, Carp RI, Haase AT. Increased expression of heat shock protein, transferrin, and ¥mbol 2-microglobulin in astrocytes during scrapie. Microb Pathog 1993, 15: 1–6.

    Article  PubMed  CAS  Google Scholar 

  68. Clinton J, Forsyth C, Royston MC, Roberts GW. Synaptic degeneration is the primary neuro-pathological feature in prion disease: A preliminary study. Neuroreport 1993, 4: 65–68.

    Article  PubMed  CAS  Google Scholar 

  69. DeArmond SJ, Prusiner SB. Etiology and pathogenesis of prion diseases. Am J Pathol 1995, 146: 785–811.

    PubMed  CAS  Google Scholar 

  70. Fairbairn DW, Carnahan KG, Thwaits RN, Grigsby RV, Holyoak GR, O’Neill KL. Detection of apoptosis induced DNA cleavage in scrapie-infected sheep brain. FEMS Microbiol Lett 1994, 115: 341–346.

    Article  PubMed  CAS  Google Scholar 

  71. Giese A, Groschup MH, Hess B, Kretzschmar HA. Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 1995, 5: 213–221.

    Article  PubMed  CAS  Google Scholar 

  72. Moser M, Colello RJ, Pott U, Oesch B. Developmental expression of the prion protein gene in glial cells. Neuron 1995, 14: 509–517.

    Article  PubMed  CAS  Google Scholar 

  73. Diedrich JF, Bendheim PE, Kim YS, Carp RI, Haase AT. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Natl Acad Sci USA 1991, 88: 375–379.

    Article  PubMed  CAS  Google Scholar 

  74. Race RE, Priola SA, Bessen RA, Ernst D, Dockter J, Rall GF, Mucke L, Chesebro B, Oldstone MBA. Neuron-specific expression of a hamster prion protein minigene in transgenic mice induces susceptibility to hamster scrapie agent. Neuron 1995, 15: 1183–1191.

    Article  PubMed  CAS  Google Scholar 

  75. Casaccia-Bonnefil P, Kascsak RJ, Fersko R, Callahan S, Carp RI. Brain regional distribution of prion protein PrP27-30 in mice stereotaxically microinjected with different strains of scrapie. J Infect Dis 1993, 167: 7–12.

    Article  PubMed  CAS  Google Scholar 

  76. Jeffrey M, Fraser JR, Halliday WG, Fowler N, Goodsir CM, Brown DA. Early unsuspected neuron and axon terminal loss in scrapie-infected mice revealed by morphometry and immunocytochemistry. Neuropathol Appl Neurobiol 1995, 21: 41–49.

    Article  PubMed  CAS  Google Scholar 

  77. Borchelt DR, Koliatsos VE, Guarnieri M, Pardo CA, Sisodia SS, Price DL. Rapid antero-grade axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 1994, 269: 14,711-14,714.

    Google Scholar 

  78. Brandner S, Raeber A, Sailer A, Blättler T, Fischer M, Weissmann C, Aguzzi A. Normal host prion protein (PrPc) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci USA 1996, 93: 13,148-13,151.

    Google Scholar 

  79. Jendroska K, Heinzel FP, Rotchia M, Stowring L, Kretzschmar HA, Kon A, Stern A, Prusiner SB, DeArmond SJ. Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 1991, 41: 1482–1490.

    Article  PubMed  CAS  Google Scholar 

  80. Carp RI, Rubenstein R. Diversity and significance of scrapie strains. Semin Virology 1991, 2: 203–213.

    Google Scholar 

  81. DeArmond SJ, Yang S-L, Lee A, Bowler R, Taraboulos A, Groth D, Prusiner SB. Three scrapie prion isolates exhibit different accumulation patterns of the prion protein scrapie isoform. Proc Natl Acad Sci USA 1993, 90: 6449–6453.

    Article  PubMed  CAS  Google Scholar 

  82. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, Mastrianni J, Lugaresi E, Gambetti P, Prusiner SB. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 1996, 274: 2079–2082.

    Article  PubMed  CAS  Google Scholar 

  83. Taraboulos A, Jendroska K, Serban D, Yang S-L, DeArmond SJ. Regional mapping of prion protins in brain. Proc Natl Acad Sci USA 1992, 89: 7620–7624.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borchelt, D.R. (1999). Mechanisms of Cell Injury in Prion Diseases. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics