Skip to main content

Abstract

Encephalitis, strictly defined as inflammation of the brain, most commonly results from acute viral infection of the central nervous system (CNS). While many thousands of cases of viral encephalitis occur worldwide each year, infections caused by the arthropod-borne viruses (arboviruses) and herpes simplex virus (HSV) are the most life-threatening. The arboviruses that cause encephalitis in humans include members of the flavivirus family, the bunyavirus family, and the alphavirus genus of the togavirus family. The prototype alphavirus, Sindbis virus, causes an epidemic arthritis in humans and an acute encephalitis in mice. Since murine Sindbis virus infection exhibits many features that are similar to the human alphavirus-induced encephalitides, it serves as a useful animal model for studying these illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson AC, Moench TR, Griffin DE, Johnson RT. The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 1987, 56: 418–423.

    PubMed  CAS  Google Scholar 

  2. Griffin DE. Alphavirus pathogenesis and immunity, in The Togaviridae and Flaviviridae (Schlesinger S, Schlesinger MJ, eds.), Plenum Publ., New York, 1986, 209–249.

    Chapter  Google Scholar 

  3. Sabin AB. Epidemic encephalitis in military personnel. J Amer Med Assoc 1947, 133: 281–293.

    Article  CAS  Google Scholar 

  4. Dickerson RB, Newton JR, Hansen JE. Diagnosis and immediate prognosis of Japanese B encephalitis. Am J Med 1952, 12: 277–288.

    Article  PubMed  CAS  Google Scholar 

  5. Smorodintsev AA. Tick-borne spring-summer encephalitis. Prog Med Virol 1958, 1: 210–248.

    PubMed  CAS  Google Scholar 

  6. Grascenkov NI. Tick-borne encephalitis in the USSR. Bull WrldHlth Org 1964, 30: 187–196.

    CAS  Google Scholar 

  7. Hurwitz ES, Schell W, Nelson D, Washburn J, LaVenture M. Surveillance for California encephalitis group virus illness in Wisconsin and Minnesota, 1978. Am J Trop Med Hyg 1983, 32: 595–601.

    PubMed  CAS  Google Scholar 

  8. Longshore WA, Stevens IM, Hollister AC, Gittelsohn A, Lennette EH. Epidemiologic observations on acute infectious encephalitis in California with special reference to the 1952 outbreak. Amer J Hyg 1956, 63: 69–86.

    PubMed  Google Scholar 

  9. Earnest MP, Goolishian HA, Calverley JR, Hayes RO, Hill HR. Neurologic, intellectual and psychologic sequelae following western encephalitis: A followup study of 35 cases. Neurol 1971, 21: 969–974.

    Article  CAS  Google Scholar 

  10. Przelomiski MM, O’Rourke E, Grady GF, Berardi VP, Markley HG. Eastern equine encephalitis in Massachusetts: A report of 16 cases, 1970–1984. Neurol 1988, 38: 736–739.

    Article  Google Scholar 

  11. Monath TP, Tsai TF. St. Louis encephalitis: Lessons from the last decade. Amer J Trop Med Hyg 1987, 37 (suppl): 40S-59S.

    Google Scholar 

  12. Taylor RM, Hurlbut HS, Work TH, Kingston JR, Frothingham TE. Sindbis virus: a newly recognized arthropod-transmitted virus. Amer J Trop Med Hyg 1955, 4: 844–862.

    CAS  Google Scholar 

  13. Schlesinger MJ, Schlesinger S. Formation and assembly of alphavirus glycoproteins, in The Togaviridae and Flaviviridae (Schlesinger S, Schlesinger MJ, eds.), Plenum Press, New York, 1986, 121–148.

    Chapter  Google Scholar 

  14. Monath TP. Flaviviruses, in Fields Virology, 2nd edn. (Fields BN, ed.), Raven Press, New York, 1990, 763–814.

    Google Scholar 

  15. Calisher CH. Medically important arboviruses of the United States and Canada. Clin Microbiol Revs 1994, 7: 89–116.

    CAS  Google Scholar 

  16. Paul WS, Moore PS, Karabatsos N, Flood SP, Yamada S, Jackson T, Tsai TF. Outbreak of Japanese encephalitis on the island of Saipan, 1990. J Infect Dis 1993, 167: 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  17. Umenai T, Krzysko R, Bektimirov TA, Assaad FA. Japanese encephalitis: Current worldwide status. Bull World Hlth Org 1985, 63: 625–631.

    CAS  Google Scholar 

  18. Ravi V, Desai AS, Shenoy PK, Satishchandra P, Chandramuki A, Gourie-Devi M. Persistence of Japanese encephalitis virus in the human nervous system. J Med Virol 1993, 40: 326–329.

    Article  PubMed  CAS  Google Scholar 

  19. Kokernot RH, Hayes J, Will RL, Tempelis CH, Chan DHM, Radivojivic B. Arbovirus studies in the Ohio-Mississippi basin, 1964–1967. II. St. Louis encephalitis virus. Amer J Trop Med Hyg 1969, 18: 750–761.

    CAS  Google Scholar 

  20. Tsai TF, Canfield MA, Reed CM, Flannery VL, Sullivan KH, Reeve GR, Bailey RE, Poland JD. Epidemiological aspects of a St. Louis encephalitis outbreak in Harris County, Texas, 1986. J Infect Dis 1988, 157: 351–356.

    Article  PubMed  CAS  Google Scholar 

  21. Southern PM, Smith JW, Luby JP, Barnett JA, Sanford JP. Clinical and laboratory features of epidemic St. Louis encephalitis. Ann Int Med 1969, 71: 681–690.

    PubMed  Google Scholar 

  22. Okhuysen PC, Crane JK, Pappas J. St. Louis encephalitis in patients with human immunodeficiency virus infection. Clin Infect Dis 1993, 17: 140–141.

    Article  PubMed  CAS  Google Scholar 

  23. White MG, Carter NW, Rector FC, Seidin DW. Pathophysiology of epidemic St. Louis encephalitis. I. Inappropriate secretion of antidiuretic hormone. Ann Int Med 1969, 71: 691–702.

    PubMed  CAS  Google Scholar 

  24. Asher DM. Chronic encephalitis, in Search for the Cause of Multiple Sclerosis and Other Chronic Diseases of the Central Nervous System (Boese A, Weinheim, eds.), Verlag Chemie; 1980, 272–279.

    Google Scholar 

  25. Cruse RP, Rothner AD, Erenberg G, Calisher CH. Central European tick borne encephalitis: An Ohio case with a history of foreign travel. Amer J Dis Child 1979, 133: 1070–1071.

    PubMed  CAS  Google Scholar 

  26. Blaskovic D. The public health importance of tick borne encephalitis in Europe. Bull Wld Hlth Org 36 suppl, 1967, 1: 5–13.

    Google Scholar 

  27. Gonzalez-Scarano F, Nathanson N. Bunyaviruses, in Fields Virology, 2nd edn. (Fields BN, ed.), Raven Press, New York, 1990, 1195–1228.

    Google Scholar 

  28. 28. Centers for Disease Control. Aedes albopictus infestation—United States, Brazil. MMWR 1986, 35: 493–495.

    Google Scholar 

  29. 29. Centers for Disease Control. LaCrosse encephalitis in West Virginia. MMWR 1988, 37: 79–82.

    Google Scholar 

  30. Markoff L. Alphaviruses, in Principles and Practice of Infectious Diseases, 4th edn. (Mandell GL, Dolin K, Bennett JE, eds.), Churchill Livingstone, New York, 1995, 1455–1459.

    Google Scholar 

  31. Farber S, Hill A, Connerly ML, Dingle JH. Encephalitis in infants and children caused by the virus of the Eastern variety of equine encephalitis. J Amer Med Assoc 1940, 114: 1725–1731.

    Article  Google Scholar 

  32. 32. Centers for Disease Control. Arboviral infections of the central nervous system—United States, 1987. MMWR 1988, 37: 506–515.

    Google Scholar 

  33. Lennette EH, Longshore WA. Western equine and St. Louis encephalitis in man, California, 1945–1950. Calif Med 1951, 75: 189.

    PubMed  CAS  Google Scholar 

  34. Kokernot RH, Shinefield HR, Longshore WA. The 1952 outbreak of encephalitis in California. Calif Med 1953, 79: 73–77.

    PubMed  CAS  Google Scholar 

  35. Somekh E, Glode MP. Multiple intracranial calcifications after western equine encephalitis. Ped Infect Dis J 1991, 10: 408–409.

    CAS  Google Scholar 

  36. Schlesinger MJ, London SD, Ryan C. An in-frame insertion into the Sindbis virus 6K gene leads to defective proteolytic processing of the virus glycoproteins, a trans-dominant negative inhibition of normal virus formation, and interference in virus shut off of host-cell protein synthesis. Virology 1993, 193: 424–432.

    Article  PubMed  CAS  Google Scholar 

  37. Schlesinger Y, Tebas P, Gaudreault-Keener M, Buller RS, Storch GA. Herpes simplex virus type 2 meningitis in the absence of genital lesions: improved recognition with use of the polymerase chain reaction. Clin Infect Dis 1995, 20: 842–848.

    Article  PubMed  CAS  Google Scholar 

  38. Linneman CC, First MR, Alvira MM, Alexander JW, Schiff GM. Herpesvirus hominis type 2 meningoencephalitis following renal transplantation. Amer J Med 1976, 61: 703–708.

    Article  Google Scholar 

  39. Nahmias AJ, Whitley RJ, Visintine AN, Takei Y, Alford Jr. CA, Collaborative Antiviral Study Group. Herpes simplex virus encephalitis: Laboratory evaluations and their diagnostic significance. J Infect Dis 1982, 145: 829–836.

    Article  PubMed  CAS  Google Scholar 

  40. Heller M, Dix RD, Baringer JR, Schachter J, Conte JE Jr. Herpetic proctitis and meningitis: Recovery of two strains of herpes simplex type 1 from cerebrospinal fluid. J Infect Dis 1982, 146: 584–588.

    Article  PubMed  CAS  Google Scholar 

  41. Whitley RJ, Lakeman F. Herpes simplex virus infection of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 1995, 20: 414–420.

    Article  PubMed  CAS  Google Scholar 

  42. Olson LC, Buescher EL, Artenstein MS. Herpesvirus infections of the human central nervous system. N Engl J Med 1967, 24: 1271–1277.

    Article  Google Scholar 

  43. Whitley R, Lakeman AD, Nahmias A, Roizman B. DNA restriction enzyme analysis of herpes simplex virus isolates obtained from patients with encephalitis. N Engl J Med 1982, 307: 1060–1062.

    Article  PubMed  CAS  Google Scholar 

  44. Hammer SM, Buchman TG, D’Angelo LJ, Karchmer AW, Roizman B, Hirsch MD. Temporal cluster of herpes simplex encephalitis: Investigation by restriction endonuclease cleavage of viral DNA. J Infect Dis 1980, 141: 436–440.

    Article  PubMed  CAS  Google Scholar 

  45. Landry ML, Berkovits IV, Summers WP, Booss J, Hsiung GD, Summers WC. Herpes simplex encephalitis: Analysis of a cluster of cases by restriction endonuclease mapping of virus isolates. Neurol 1983, 33: 831–835.

    Article  CAS  Google Scholar 

  46. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, van Loon AM. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. J Neurol Neurosurg Psych 1996, 61: 339–345.

    Article  CAS  Google Scholar 

  47. Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J Infect Dis 1995, 171: 857–863.

    Article  PubMed  CAS  Google Scholar 

  48. Whitley RJ. Neonatal herpes simplex virus infections. J Med Virol Suppl 1993, 1: 13–21.

    Article  PubMed  Google Scholar 

  49. Griffin DE, Hahn CS, Jackson AC, Lustig S, Strauss EG, Strauss JH. The basis of Sindbis virus neurovirulence, in Cell Biology of Virus Entry, Replication, and Pathogenesis (Compans RW, Helenius A, Oldstone MBA, eds.), Alan R. Liss, New York, 1989, 387–396.

    Google Scholar 

  50. Wesselingh SL, Levine B, Fox RJ, Choi S, Griffin DE. Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2 T cell response. J Immunol 1994, 152: 1289–1297.

    PubMed  CAS  Google Scholar 

  51. Griffin DE, Hess JL. Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute Sindbis virus encephalitis. J Immunol 1986, 136: 1841–1845.

    PubMed  CAS  Google Scholar 

  52. Moench TR, Griffin DE. Immunocytochemical identification and quantitation of mono-nuclear cells in cerebrospinal fluid, ménges, brain during acute viral encephalitis. J Exp Med 1984, 159: 77–88.

    Article  PubMed  CAS  Google Scholar 

  53. Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE. Antibody-mediated clearance of alphavirus infection from neurons. Science 1991, 254: 856–860.

    Article  PubMed  CAS  Google Scholar 

  54. Lewis J, Wesselingh SL, Griffin DE, Hardwick JM. Sindbis virus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 1996, 70: 1828–1835.

    PubMed  CAS  Google Scholar 

  55. Schlesinger S, Schlesinger MJ. The Togaviridae and Flaviviridae, Plenum, New York, 1986.

    Google Scholar 

  56. Strauss EG, De Groot RJ, Levinson R, Strauss JH. Identification of the active site residues in the nsP2 proteinase of Sindbis virus. Virology 1992, 191: 932–940.

    Article  PubMed  CAS  Google Scholar 

  57. Hsieh P, Rosner MR, Robbins PW. Host-dependent variation of asparagine-linked oligosaccharides at individual glycosylation sites of Sindbis virus glycoproteins. J Biol Chem 1983, 258: 2548–2554.

    PubMed  CAS  Google Scholar 

  58. Lemm JA, Rice CM. Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription. J Virol 1993, 67: 1916–1926.

    PubMed  CAS  Google Scholar 

  59. Wengler G, Wengler G. The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 1991, 184: 707–715.

    Article  PubMed  CAS  Google Scholar 

  60. Gorbalenya AE, Koonin EV. Viral proteins containing the purine NTP-binding sequence pattern. Nucl Acids Res 1989, 17: 8413–8441.

    Article  PubMed  CAS  Google Scholar 

  61. Strauss EG, Strauss JH. Structure and replication of the alphavirus genome, in The Togaviridae and Flaviviridae (Schlesinger S, Schlesinger MJ, eds.), Plenum Press, New York, 1986, 35–90.

    Chapter  Google Scholar 

  62. Mi S, Durbin R, Huang HV, Rice CM, Stollar V. Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsPl. Virology 1989, 170: 385–391.

    Article  PubMed  CAS  Google Scholar 

  63. Wang Y-F, Sawicki SG, Sawicki DL. Sindbis virus nsPl functions in negative-strand RNA synthesis. J Virol 1991, 65: 985–988.

    PubMed  CAS  Google Scholar 

  64. Li G, LaStarza M, Hardy WR, Strauss JH, Rice CM. Phosphorylation of Sindbis nsP3 in vivo and in vitro. Virology 1990, 179: 416–427.

    Article  PubMed  CAS  Google Scholar 

  65. Poch O, Sauvaget I, Delarue M, Tordo N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 1989, 8: 3867–3874.

    PubMed  CAS  Google Scholar 

  66. Hahn YS, Grakoui A, Rice CM, Strauss EG, Strauss JH. Mapping of RNA-temperature-sensitive mutants of Sindbis virus: complementation group F mutants have lesions in nsP4. J Virol 1989, 63: 1194–1202.

    PubMed  CAS  Google Scholar 

  67. Barton DJ, Sawicki SG, Sawicki DL. Solubilization and immunoprecipitation of alphavirus replication complexes. J Virol 1991, 65: 1496–1506.

    PubMed  CAS  Google Scholar 

  68. Kuhn RJ, Griffin DE, Zhang H, Niesters HGM, Strauss JH. Attenuation of Sindbis virus neurovirulence by using defined mutations in nontranslated regions of the genome RNA. J Virol 1992, 66: 7121–7127.

    PubMed  CAS  Google Scholar 

  69. Pogue GP, Cao X-Q, Singh NK, Nakhasi HL. 5′ sequences of rubella virus RNA stimulate translation of chimeric RNAs and specifically interact with two host-encoded proteins. J Virol 1993, 67: 7106–7117.

    PubMed  CAS  Google Scholar 

  70. Simmons DT, Strauss JH. Translation of Sindbis virus 26 S RNA and 49 S RNA in lysates of rabbit reticulocytes. J Mol Biol 1974, 86: 397–409.

    Article  PubMed  CAS  Google Scholar 

  71. Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 1991, 354: 37–43.

    Article  PubMed  CAS  Google Scholar 

  72. Liljestrom P, Garoff H. Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol 1991, 65: 147–154.

    PubMed  CAS  Google Scholar 

  73. Ding M, Schlesinger MJ. Evidence that Sindbis virus NSP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 1989, 171: 280–284.

    Article  PubMed  CAS  Google Scholar 

  74. Mayne JT, Bell JR, Strauss EG, Strauss JH. Pattern of glycosylation of sindbis virus envelope proteins synthesized in hamster and chicken cells. Virology 1985, 142: 121–133.

    Article  PubMed  CAS  Google Scholar 

  75. Wahlberg JM, Bron R, Wilschut J, Garoff H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol 1992, 66: 7309–7318.

    PubMed  CAS  Google Scholar 

  76. Wang K-S, Kuhn RJ, Strauss EG, Ou S, Strauss JH. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J Virol 1992, 66: 4992–5001.

    PubMed  CAS  Google Scholar 

  77. Ubol S, Griffm DE. Identification of a putative alphavirus receptor on mouse neural cells. J Virol 1991, 65: 6913–6921.

    PubMed  CAS  Google Scholar 

  78. Presley JF, Polo JM, Johnston RE, Brown DT. Proteolytic processing of the Sindbis virus membrane protein precursor PE2 is nonessential for growth in vertebrate cells but is required for efficient growth in invertebrate cells. J Virol 1991, 65: 1905–1909.

    PubMed  CAS  Google Scholar 

  79. Metsikko K, Garoff H. Oligomers of the cytoplasmic domain of the p62/E2 membrane protein of Semliki Forest virus bind to the nucleocapsid in vitro. J Virol 1990, 64: 4678–4683.

    PubMed  CAS  Google Scholar 

  80. Suomalainen M, Garoff H. Alphavirus spike-nucleocapsid interaction and network antibodies. J Virol 1992, 66: 5106–5109.

    PubMed  CAS  Google Scholar 

  81. Zhao H, Garoff H. Role of cell surface spikes in alphavirus budding. J Virol 1992, 66: 7089–7095.

    PubMed  CAS  Google Scholar 

  82. Suomalainen M, Liljestrom P, Garoff H. Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J Virol 1992, 66: 4737–4747.

    PubMed  CAS  Google Scholar 

  83. Vaux DJT, Helenius A, Mellman I. Spike-nucleocapsid interaction in Semliki Forest virus reconstructed using network antibodies. Nature 1988, 336: 36–42.

    Article  PubMed  CAS  Google Scholar 

  84. Gaedigk-Nitschko K, Schlesinger MJ. The Sindbis virus 6K protein can be detected in virions and is acylated with fatty acids. Virology 1990, 175: 274–281.

    Article  PubMed  CAS  Google Scholar 

  85. Ivanova L, Schlesinger MJ. Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding. J Virol 1993, 67: 2546–2551.

    PubMed  CAS  Google Scholar 

  86. Liu N, Brown DT. Phosphorylation and dephosphorylation events play critical roles in Sindbis virus maturation. Virology 1993, 196: 703–711.

    Article  PubMed  CAS  Google Scholar 

  87. Levine B, Jiang HH, Kleeman L, Yang G. Effect of E2 envelope glycoprotein cytoplasmic domain mutations on Sindbis virus pathogenesis. J Virol 1996, 70: 1255–1260.

    PubMed  CAS  Google Scholar 

  88. Lee S, Owen KE, Choi H-K, Lee H, Lu G, Wengler G, Brown DT, Rossmann MG, Kuhn RJ. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 1996, 4: 531–541.

    Article  PubMed  CAS  Google Scholar 

  89. Weiss B, Geigenmuller-Gnirke U, Schlesinger S. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. Nucleic Acids Res 1994, 22: 780–786.

    Article  PubMed  CAS  Google Scholar 

  90. Gaedigk-Nitschko K, Schlesinger MJ. Site-directed mutations in Sindbis virus E2 glycoprotein’s cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 1991, 183: 206–214.

    Article  PubMed  CAS  Google Scholar 

  91. Liu N, Brown DT. Transient translocation of the cytoplasmic (Endo) domain of a type I membrane glycoprotein into cellular membranes. J Cell Biol 1993, 120: 877–883.

    Article  PubMed  CAS  Google Scholar 

  92. Melancon P, Garoff H. Reinitiation of translocation in the Semliki Forest virus structural polyprotein: identification of the signal for the E1 glycoprotein. EMBO J 1986, 5: 1551–1560.

    PubMed  CAS  Google Scholar 

  93. Hashimoto K, Erdel S, Keranen S, Saraste J, Kaariainen L. 1981, Evidence for a separate signal sequence for the carboxy-terminal envelope glycoprotein El of Semliki Forest virus. J Virol 38: 34–40.

    PubMed  CAS  Google Scholar 

  94. Lusa S, Garoff H, Liljestrom P. Fate of the 6K membrane protein of Semliki Forest virus during virus assembly. Virology 1991, 185: 843–846.

    Article  PubMed  CAS  Google Scholar 

  95. Gaedigk-Nitschko K, Ding M, Levy MA, Schlesinger MJ. Site-directed mutations in the Sindbis virus 6K protein reveal sites for fatty acylation and the underacylated protein affects virus release and virion structure. Virology 1990, 175: 282–291.

    Article  PubMed  CAS  Google Scholar 

  96. Sanz MA, Perez L, Carrasco L. Semliki Forest virus 6K protein modifies membrane permeability after inducible expression in Escherichia coli cells. J Biol Chem 1994, 269: 12,106-12,110.

    Google Scholar 

  97. Liljestrom P, Lusa S, Huylebroeck D, Garoff H. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 1991, 65: 4107–4113.

    PubMed  CAS  Google Scholar 

  98. Levy-Mintz P, Kielian M. Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J Virol 1991, 65: 4292–4300.

    PubMed  CAS  Google Scholar 

  99. Boggs WM, Hahn CS, Strauss EG, Strauss JH, Griffin DE. Low pH-dependent Sindbis virus-induced fusion of BHK cells: Differences between strains correlate with amino acid changes in the E1 glycoprotein. Virology 1989, 169: 485–488.

    Article  PubMed  CAS  Google Scholar 

  100. Singh I, Helenius A. Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. J Virol 1992, 66: 7049–7058.

    PubMed  CAS  Google Scholar 

  101. Singh I, Helenius A. Nucleocapsid uncoating during entry of enveloped animal RNA viruses into cells. Virology 1992, 3: 511–518.

    CAS  Google Scholar 

  102. Geigenmuller-Gnirke U, Nitschko H, Schlesinger S. Deletion analysis of the capsid protein of Sindbis virus: Identification of the RNA binding region. J Virol 1993, 67: 1620–1626.

    PubMed  CAS  Google Scholar 

  103. Elgizoli M, Dai Y, Kempf C, Koblet H, Michel MR. Semliki Forest virus capsid protein acts as a pleiotropic regulator of host cellular protein synthesis. J Virol 1989, 63: 2921–2928.

    PubMed  CAS  Google Scholar 

  104. Peranen J, Kaariainen L. Biogenesis of type I cytopathic vacuoles in Semliki Forest virus-infected BHK cells. J Virol 1991, 65: 1623–1627.

    PubMed  CAS  Google Scholar 

  105. Froshauer S, Kartenbeck J, Helenius A. Alphavirus RNA replicase is located on the cyto-plasmic surface of endosomes and lysosomes. J Cell Biol 1988, 107: 2075–2086.

    Article  PubMed  CAS  Google Scholar 

  106. Rikkonen M, Peranen J, Kaariainen L. Nuclear and nucleolar targeting signals of Semliki Forest virus nonstructural protein nsP2. Virology 1992, 189: 462–473.

    Article  PubMed  CAS  Google Scholar 

  107. Hambidge SJ, Sarnow P. Early events inpoliovirus-infected cells. Virology 1992, 3: 501–510.

    CAS  Google Scholar 

  108. Griffin DE, Levine B, Tyor WR, Tucker PC, Hardwick JM. Age-dependent susceptibility to fatal encephalitis: alphavirus infection of neurons. Arch Virol 1994a, 9: 31–39.

    CAS  Google Scholar 

  109. Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH. Molecular basis of Sindbis virus neurovirulence in mice. J Virol 1988, 62: 2329–2336.

    PubMed  CAS  Google Scholar 

  110. Ubol S, Tucker PC, Griffin DE, Hardwick JM. Neurovirulent strains of alphavirus induce apoptosis in bcl-2-expressing cells; Role of a single amino acid change in the E2 glycoprotein. Proc Natl Acad Sci USA 1994, 91: 5202–5206.

    Article  PubMed  CAS  Google Scholar 

  111. Tucker PC, Strauss EG, Kuhn RJ, Strauss JH, Griffin DE. Viral determinants of age-dependent virulence of Sindbis virus for mice. J Virol 1993, 67: 4605–4610.

    PubMed  CAS  Google Scholar 

  112. Levine B, Griffin DE. Molecular analysis of neurovirulent strains of Sindbis virus that evolve during persistent infection of scid mice. J Virol 1993, 67: 6872–6875.

    PubMed  CAS  Google Scholar 

  113. Dropulic LK, Hardwick JM, Griffin DE. A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 1997, 71: 6100–6105.

    PubMed  CAS  Google Scholar 

  114. Tucker, PC, Lee CH, Bui N, Martinie D, Griffin DE. Amino acid changes in the Sindbis virus glycoprotein that increase neurovirulence improve entry into the neuroblastoma cells. J Virol 1997, 71: 6106–6112.

    Google Scholar 

  115. Griffin DE, Levine B, Ubol S, Hardwick JM. The effects of alphavirus infection on neurons. Annals Neurol 1994, 35: S23–S27.

    Article  Google Scholar 

  116. Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 1993, 361: 739–742.

    Article  PubMed  CAS  Google Scholar 

  117. Zhuang S-M, Shvarts A, van Ormondt H, Jochemsen AG, van der EBAJ, Mathieu HM, Noteborn HM. Apoptin, a protein derived from chicken anemia virus, induces p53-independent apoptosis in human osteosarcoma cells. Can Res 1995, 55: 486–489.

    CAS  Google Scholar 

  118. Frolov I, Schlesinger S. A comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 1994, 68: 1721–1727.

    PubMed  CAS  Google Scholar 

  119. Saito S. Enhancement of the interferon-induced double-stranded RNA-dependent protein kinase activity by Sindbis virus infection and heat-shock stress. Microbiol Immunol 1990, 34: 859–870.

    PubMed  CAS  Google Scholar 

  120. Lewis J, Jagus R, Hardwick JM. Unpublished data, 1997.

    Google Scholar 

  121. Lee SB, Esteban M. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 1994, 199: 491–496.

    Article  PubMed  CAS  Google Scholar 

  122. Tolskaya EA, Romanova LI, Kolesnikova MS, Ivasnnikova TA, Smirnova EA, Raikhlin NT, Agol VI. Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 1995, 69: 1181–1189.

    PubMed  CAS  Google Scholar 

  123. Clem RJ, Miller LK. Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 1994, 14: 5212–5222.

    PubMed  CAS  Google Scholar 

  124. Martin DP, Schmidt RE, DiStefano PS, Lowry OH, Carter JG, Johnson EM Jr. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol 1988, 106: 829–844.

    Article  PubMed  CAS  Google Scholar 

  125. Estus S, Zaks WJ, Freeman RS, Gruda M, Bravo R, Johnson EM Jr. Altered gene expression in neurons during programmed cell death—identification of c-Jun as necessary for neuronal apoptosis. J Cell Biol 1994, 127: 1717–1727.

    Article  PubMed  CAS  Google Scholar 

  126. Proud CG. PKR: a new name and new roles. TIBS 1995, 20: 241–246.

    PubMed  CAS  Google Scholar 

  127. Lin K-I, Lee S-H, Narayanan R, Baraban JM, Hardwick JM, Ratan RR. Thiol agents and Bcl-2 identify an alphavirus-induced apoptotic pathway that requires activation of the transcription factor NF-kappa B. J Cell Biol 1995, 131: 1149–1161.

    Article  PubMed  CAS  Google Scholar 

  128. Beg AA, Baldwin AS Jr. The IkB proteins: multifunctional regulators of Rel/NF-kB transcription factors. Genes Dev 1993, 7: 2064–2070.

    Article  PubMed  CAS  Google Scholar 

  129. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E. The adenovirus El A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 1992, 89: 7742–7746.

    Article  PubMed  CAS  Google Scholar 

  130. Qin X-Q, Livingston DM, Kaelin WG Jr, Adams PD. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc Natl Acad Sci USA 1994, 91: 10918–10922.

    Article  PubMed  CAS  Google Scholar 

  131. Casano FJ, Rolando AM, Mudgett JS, Molineaux SM. The structure and complete nucleotide sequence of the murine gene encoding interleukin-1-beta converting enzyme (ICE). Genomics 1994, 20: 474–481.

    Article  PubMed  CAS  Google Scholar 

  132. Wu H, Lozano G. NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem 1994, 269: 20,067-20,074.

    Google Scholar 

  133. Trede NS, Tsytsykova AV, Chatila T, Goldfeld AE, Geha RS. Transcriptional activation of the human TNF-alpha promoter by superantigen in human monocytic cells: role of NF-kappa B. J Immunol 1995, 155: 902–908.

    PubMed  CAS  Google Scholar 

  134. Tsujimoto Y, Bashir MM, Givol I, Cossman J, Jaffe E, Croce CM. DNA rearrangements in human follicular lymphoma can involve the 5′ or the 3′ region of the bcl-2 gene. Proc Natl Acad Sci USA 1987, 84: 1329–1331.

    Article  PubMed  CAS  Google Scholar 

  135. Miyashita T, Reed JC. bcl-2 gene transfer increases relative resistance of S49.1 and WEH17.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Can Res 1992, 52: 5407–5411.

    CAS  Google Scholar 

  136. Zhong L-T, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bedesen DE. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993, 90: 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  137. Mah SP, Zhong LT, Liu Y, Roghani A, Edwards RH, Bredesen DE. The protooncogene bcl-2 inhibits apoptosis in PC12 cells. J Neurochem 1993, 60: 1183–1186.

    Article  PubMed  CAS  Google Scholar 

  138. Garcia I, Martinou I, Tsujimoto Y, Martinou J-C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 1992, 258: 302–304.

    Article  PubMed  CAS  Google Scholar 

  139. Allsopp TE, Wyatt S, Paterson HF, Davies AM. The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis. Cell 1993, 73: 295–307.

    Article  PubMed  CAS  Google Scholar 

  140. Dubois-Dauphin M, Frankowski H, Tsujimoto Y, Huarte J, Martinou JC. Neonatal moto-neurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc Natl Acad Sci USA 1994, 91: 3309–3313.

    Article  PubMed  CAS  Google Scholar 

  141. Hinshaw VS, Olsen CW, Dybdahl-Sissoko N, Evans D. Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol 1994, 68: 3667–3673.

    PubMed  CAS  Google Scholar 

  142. Nunez G, Hocknebery D, McDonnell TJ, Sorensen CM, Korsmeyer SJ. Bcl-2 maintains B cell memory. Nature 1991, 353: 71–73.

    Article  PubMed  CAS  Google Scholar 

  143. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, Harris AW. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci USA 1991, 83: 8661–8665.

    Article  Google Scholar 

  144. Nakayama K-I, Nakayama K, Negishi I, Kuida K, Shinkai Y, Louie MC, Fields LE, Lucas PJ, Stewart V, Alt FW, Loh DY. Disappearance of the lymphoid system in bcl-2 homozygous mutant chimeric mice. Science 1993, 261: 1584–1588.

    Article  PubMed  CAS  Google Scholar 

  145. Veis DJ, Sorenson CM, Shutter SR, Korsmeyer SJ. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 1993, 75: 229–240.

    Article  PubMed  CAS  Google Scholar 

  146. Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y. bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Can Res 1995, 55: 354–359.

    CAS  Google Scholar 

  147. Nakayama K, Nakayama K-I, Negishi I, Kuida K, Sawa H, Loh DY. Targeted disruption of Bcl-2aβ in mice: Occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 1994, 91: 3700–3704.

    Article  PubMed  CAS  Google Scholar 

  148. Martinou J-C, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Dominique T, Catsicas S, Pietra C, Haurte J. Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994, 13: 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  149. Dubois-Dauphin M, Frankowski H, Tsujimoto Y, Huarte J, Martinou JC. Neonatal motorneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc Natl Acad Sci USA 1994, 91: 3309–3313.

    Article  PubMed  CAS  Google Scholar 

  150. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993, 74: 597–608.

    Article  PubMed  CAS  Google Scholar 

  151. Gibson L, Holmgreen SP, Huang DCS, Bernand O, Copeland NG, Jenkins NA, Sutherland GR, Baker E, Adams JM, Cory S. Bcl-w, a novel member of the Bcl-2 family, promotes cell survival. Oncogene 1996, 13: 665–675.

    PubMed  CAS  Google Scholar 

  152. Frankowski H, Missotten M, Fernandez P-A, Martinou I, Michel P, Sadoul R, Martinou J-C. Function and expression of the Bcl-x gene in the developing and adult nervous system. NeuroReport 1995, 6: 1917–1921.

    Article  PubMed  CAS  Google Scholar 

  153. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K-I, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S, Loh DY. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995, 267: 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  154. Chen DF, Schneider GE, Martinou J-C, Tonegawa S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature 1997, 385: 434–439.

    Article  PubMed  CAS  Google Scholar 

  155. Zhang K-Z, Westberg JA, Holtta E, Andersson LC. Bcl-2 regulates neural differentiation. Proc Natl Acad Sci USA 1996, 93: 4504–4508.

    Article  PubMed  CAS  Google Scholar 

  156. Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross talk between cell death and cell cycle progression: Bcl-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA 1996, 93: 9545–9552.

    Article  PubMed  CAS  Google Scholar 

  157. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 1993, 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  158. Farrow SN, White JHM, Martinou I, Raven T, Pun K-T, Grinham CJ, Martinou J-C, Brown R. Cloning of a bcl-2 homologue by interaction with adenovirus E1B 19K. Nature 1995, 374: 731–733.

    Article  PubMed  CAS  Google Scholar 

  159. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 1995b, 374: 733–736.

    Article  PubMed  CAS  Google Scholar 

  160. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 1995, 374: 736–739.

    Article  PubMed  CAS  Google Scholar 

  161. Yin X-M, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 1994, 369: 321–323.

    Article  PubMed  CAS  Google Scholar 

  162. Cheng EH-Y, Levine B, Boise LH, Thompson CB, Hardwick JM. Bax-independent inhibition of apoptosis by Bcl-xL. Nature 1996, 379: 554–556.

    Article  PubMed  CAS  Google Scholar 

  163. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong S-L, Ng S-C, Fesik SW. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 1996, 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  164. Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 1995a, 14: 5589–5596.

    PubMed  CAS  Google Scholar 

  165. Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ. Bax is required for neuronal death after trophic factor deprivation and during development. Neuron 1996, 17: 401–411.

    Article  PubMed  CAS  Google Scholar 

  166. Han J, Sabbatini P, Perez D, Rao L, Modha D, White E. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes Develop 1996, 10: 461–477.

    Article  PubMed  CAS  Google Scholar 

  167. Zha H, Aime-Sempe C, Sato T, Reed JC. Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 1996, 271: 7440–7444.

    Article  PubMed  CAS  Google Scholar 

  168. Cheng EH-Y, Nicholas J, Bellows DS, Hayward GS, Guo H-G, Reitz MS, Hardwick JM. A Bcl-2 homolog encoded by Kaposi’s sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 1997, 94: 690–694.

    Article  PubMed  CAS  Google Scholar 

  169. Fernandez-Sarabia MJ, Bischoff JR. Bcl-2 associates with that ras-related protein R-ras p23. Nature 1993, 366: 274–275.

    Article  PubMed  CAS  Google Scholar 

  170. Ferrari G, Greene LA. Proliferative inhibition by dominant negative ras rescues naive and neuronally differentiated PC 12 cells from apoptotic death. EMBO J 1994, 13: 5922–5928.

    PubMed  CAS  Google Scholar 

  171. Joe AK, Ferrari G, Jiang HH, Liang XH, Levine B. Dominant inhibitory ras delays Sindbis virus-induced apoptosis in neuronal cells. J Virol 1996, 70: 7744–7751.

    PubMed  CAS  Google Scholar 

  172. Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 1997, 275: 1122–1126.

    Article  PubMed  CAS  Google Scholar 

  173. Wu D, Wallen HD, Nunez G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 1997, 275: 1126–1129.

    Article  PubMed  CAS  Google Scholar 

  174. Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 1997, 385: 653–655.

    Article  PubMed  CAS  Google Scholar 

  175. Fraser A, Evan G. A license to kill. Cell 1996, 85: 781–784.

    Article  PubMed  CAS  Google Scholar 

  176. de Jong D, Prins FA, Mason DY, Reed JC, van Ommen GB, Kluin PM. Subcellular localization of the bcl-2 in malignant and normal lymphoid cells. Can Res 1994, 54: 256–260.

    Google Scholar 

  177. Ryan JJ, Prochownik E, Gottlieb CA, Apel IJ, Merino R, Nunez G, Clarke MF. c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc Natl Acad Sci USA 1994, 91: 5878–5882.

    Article  PubMed  CAS  Google Scholar 

  178. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that Bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994, 91: 6569–6573.

    Article  PubMed  CAS  Google Scholar 

  179. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. J Leukocyte Biol 1996, 59: 775–783.

    PubMed  CAS  Google Scholar 

  180. Durant S, Homo F, Duval D. Calcium and A23187-induced cytolysis of mouse thymocytes. Biochem Biophysic Res Comm 1980, 93: 385–391.

    Article  CAS  Google Scholar 

  181. Distelhorst CW, Lam M, McCormick TS. Bcl-2 inhibits hydrogen peroxide-induced ER Ca2+pool depletion. Oncogene 1996, 12: 2051–2055.

    PubMed  CAS  Google Scholar 

  182. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993, 75: 241–251.

    Article  PubMed  CAS  Google Scholar 

  183. Shimizu S, Eguchi Y, Kosaka H, Kamiike W, Matsuda H, Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature 1995, 374: 811–813.

    Article  PubMed  CAS  Google Scholar 

  184. Jacobson MD, Burne JF, King MP, Miyashita T, Reed JC, Raff MC. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 1993, 361: 365–369.

    Article  PubMed  CAS  Google Scholar 

  185. Liu X, Kin CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996, 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  186. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytocrome c from mitochondria blocked. Science 1997, 275: 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  187. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997, 275: 1132–1136.

    Article  PubMed  CAS  Google Scholar 

  188. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 1996, 183: 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  189. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995, 182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  190. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 1997, 385: 353–357.

    Article  PubMed  CAS  Google Scholar 

  191. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB. A conserved family of apoptosis inhibitors related to the baculovirus iap gene. EMBO J 1996, 15: 2685–2694.

    PubMed  CAS  Google Scholar 

  192. Levine B, Goldman JE, Jiang HH, Griffin DE, Hardwick JM. Bcl-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci USA 1996, 93: 4810–4815.

    Article  PubMed  CAS  Google Scholar 

  193. Tyor WR, Wesselingh SL, Levine B, Griffin DE. Longterm intraparenchymal immunoglobulin secretion after acute viral encephalitis in mice. J Immunol 1992, 149: 4016–4020.

    PubMed  CAS  Google Scholar 

  194. Levine B, Griffin DE. Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol 1992, 66: 6429–6435.

    PubMed  CAS  Google Scholar 

  195. Despres P, Griffin JW, Griffin DE. Effects of anti-E2 monoclonal antibody on Sindbis virus replication in AT3 cells expressing bcl-2. J Virol 1995, 69: 7006–7014.

    PubMed  CAS  Google Scholar 

  196. Despres P, Griffin JW, Griffin DE. Antiviral activity of alpha interferon in Sindbis virus-infected cells is restored by anti-E2 monoclonal antibody treatment. J Virol 1995, 69: 7345–7348.

    PubMed  CAS  Google Scholar 

  197. Gorrell MD, Lemm JA, Rice CM, Griffin DE. Immunization with nonstructural proteins promotes functional recovery of alphavirus-infected neurons. JVirol 1997, 71: 3415–3419.

    CAS  Google Scholar 

  198. Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S. Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 1996, 70: 3972–3977.

    PubMed  CAS  Google Scholar 

  199. Hardwick JM. Virus-induced apoptosis. Advan Pharmacol 1997, (in press).

    Google Scholar 

  200. Clem RJ, Hardwick JM, Miller LK. Anti-apoptotic genes of baculoviruses. Cell Death Different 1996, 3: 9–16.

    CAS  Google Scholar 

  201. Shen Y, Shenk TE. Viruses and apoptosis. Curr Biol 1995, 5: 105–111.

    CAS  Google Scholar 

  202. White E. Function of the adenovirus E1B oncogene in infected and transformed cells. Sem Virol 1994, 5: 341–348.

    Article  CAS  Google Scholar 

  203. Chou J, Roizman B. The gamma-1-34.5 gene of herpes simplex virus 1 precludes neuro-blastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA 1992, 89: 3266–3270.

    Article  PubMed  CAS  Google Scholar 

  204. Koyama AH, Miwa Y. Suppression of apoptotic DNA fragmentation in herpes simplex virus type-1-infected cells. J Virol 1997, 71: 2567–2571.

    PubMed  CAS  Google Scholar 

  205. Leopardi R, Roizman B. The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proc Natl Acad Sci USA 1996, 93: 9583–9587.

    Article  PubMed  CAS  Google Scholar 

  206. Stevens JG. Human herpesviruses: a consideration of the latent state. Microbiol Rev 1989, 53: 318–332.

    PubMed  CAS  Google Scholar 

  207. Devi-Rao GB, Goodart SA, Hecht LM, Rochford R, Rice MK, Wagner EK. Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts. J Virol 1991, 65: 2179–2190.

    PubMed  CAS  Google Scholar 

  208. Wu T-T, Su Y-H, Block TM, Taylor JM. Evidence that two latency-associated transcripts of herpes simplex virus type 1 are nonlinear. J Virol 1996, 70: 5962–5967.

    PubMed  CAS  Google Scholar 

  209. Perng G-C, Ghiasi H, Slanina SM, Nesburn AB, Wechsler SL. The spontaneous reactivation function of the herpes simplex virus type 1 LAT gene resides completely within the first 1.5 kilobases of the 8.3-kilobase primary transcript. J Virol 1996, 70: 976–984.

    PubMed  CAS  Google Scholar 

  210. Bloom DC, Hill JM, Devi-Rao G, Wagner EK, Feldman LT, Stevens JG. A 348-base-pair region in the latency-associated transcript facilitates herpes simplex virus type 1 reactivation. J Virol 1996, 70: 2449–2459.

    PubMed  CAS  Google Scholar 

  211. Hossain A, Schang LM, Jones C. Identification of gene products encoded by the latency-related gene of bovine herpesvirus 1. J Virol 1995, 69: 5345–5352.

    PubMed  CAS  Google Scholar 

  212. Schang LM, Hossain A, Jones C. The latency-related gene of bovine herpesvirus 1 encodes a product which inhibits cell cycle progression. J Virol 1996, 70: 3807–3814.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hardwick, J.M., Irani, D.N., Griffin, D.E. (1999). Viral Encephalitis. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_14

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics