Skip to main content

An Introduction to Gambling Theory and Its Applications to Stochastic Games

  • Chapter

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 4))

Abstract

A brief account is given of the Dubins and Savage theory of gambling. It is then shown how the techniques of gambling theory can be applied to two-person, zero-sum stochastic games. Most proofs are omitted because they are available elsewhere. Instead we concentrate our efforts on ideas and examples.

Research supported by National Science Foundation Grant DMS-9123358

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J., Blackwell, D., and Girshick, M.A. (1949). Bayes and minimax solutions of sequential decision problems. Econometrica 17 213–244.

    Article  MathSciNet  Google Scholar 

  2. Blackwell, D. (1965). Discounted dynamic programming. Ann. Math. Stat. 36 226–235.

    Article  MathSciNet  MATH  Google Scholar 

  3. Blackwell, D. (1966). Positive dynamic programming. Proc. Fifth Berkeley Symp. Prob. and Stat. 1 415–418.

    Google Scholar 

  4. Blackwell, D. (1969). Infinite G δ games with imperfect information. Zastosowania Matematyki 10 99–101.

    MathSciNet  MATH  Google Scholar 

  5. Blackwell, D. (1989). Operator solution of G δ games of imperfect information. Probability, Statistics, and Mathematics: Papers in Honor of Samuel Karlin, T.W. Anderson, K. Athreya, and D.L. Iglehart, Eds., Academic Press, New York.

    Google Scholar 

  6. Dubins, L.E. and Savage, L.J. (1965). How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw Hill, New York. 2nd edition (1976). Dover, New York.

    MATH  Google Scholar 

  7. Dubins, L., Maitra, A., Purves, R. and Sudderth, W. (1989). Measurable, nonleavable gambling problems. Israel J. Math. 67 257–271.

    Article  MathSciNet  MATH  Google Scholar 

  8. Maitra, A. and Sudderth, W. (1992). An operator solution of stochastic games. Israel J. Math. 78 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  9. Maitra, A. and Sudderth, W. (1993). Borel stochastic games with limsup payoff. Annals Prob. 21 861–865.

    Article  MathSciNet  MATH  Google Scholar 

  10. Maitra, A. and Sudderth, W. (1993). Finitely additive and measurable stochastic games. Intl. J. Game Theor. 22 201–223.

    Article  MathSciNet  MATH  Google Scholar 

  11. Maitra, A. and Sudderth, W. (1996). Discrete Gambling and Stochastic Games, Springer-Verlag, NY.

    Book  MATH  Google Scholar 

  12. Mertens, J.-F. and Neyman, A. (1981). Stochastic games. Intl. J. of Game Theor. 10 53–66.

    Article  MathSciNet  MATH  Google Scholar 

  13. Milnor, J. and Shapley, L.S. (1957). On games of survival. Contributions to the Theory of Games,by M. Dresher, A.W. Tucker, and P. Wolfe, Eds., Ann. Math. Study No. 39, Princeton University Press, Princeton.

    Google Scholar 

  14. Nowak, A.S. (1985). Universally measurable strategies in zero-sum stochastic games. Ann. Prob. 13 269–287.

    Article  MATH  Google Scholar 

  15. Strauch, R.E. (1966). Negative dynamic programming. Ann. Math. Statist. 37 871–890.

    Article  MathSciNet  MATH  Google Scholar 

  16. Strauch, R.E. (1967). Measurable gambling houses. Transac. of the Am. Math. Soc. 126 64–72.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maitra, A., Sudderth, W. (1999). An Introduction to Gambling Theory and Its Applications to Stochastic Games. In: Bardi, M., Raghavan, T.E.S., Parthasarathy, T. (eds) Stochastic and Differential Games. Annals of the International Society of Dynamic Games, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1592-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1592-9_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7208-3

  • Online ISBN: 978-1-4612-1592-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics