Immunoprotection of Islets of Langerhans by Microencapsulation in Barium Alginate Beads

  • Tobias D. C. Zekorn
  • Reinhard G. Bretzel


Today the fate of diabetic patients is determined by the development of secondary complications such as blindness, neuropathy, and end-stage renal failure. The DCCT study1 confirmed a positive correlation of intensified insulin treatment with a reduced development of these complications. Further improvement of metabolic control could be achieved by transplantation of insulin-producing islet cells. However, a principal obstacle for this method is side effects due to chronic application of the required immunosuppression, i.e., cyclosporine A-induced hypertension and islet toxicity,2 that could be more harmful than the disease itself. Therefore, successful transplantation of islets entrapped in immunoprotective membranes (bioartificial endocrine pancreas = BAEP) would circumvent these problems and also allow transplantation of islet tissue from other species (i.e., pig) or of engineered cells. Moreover, after successful application of this principle to diabetes, it can be applied to other diseases such as phenylketonuria, pain, adrenal and neuroendocrine deficiency syndromes, hematologic diseases, etc.


Alginate Bead Porcine Islet Polyamino Acid Encapsulate Islet Encapsulation Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The diabetes control and complications trial research group. 1993. The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. NEJM 329: 977–986.CrossRefGoogle Scholar
  2. 2.
    Alejandro R, Feldman EC, Bloom AD, Kenyon NS. 1989. Effects of cyclosporin on insulin and C-peptide secretion in healthy beagles. Diabetes 38: 698–703.PubMedCrossRefGoogle Scholar
  3. 3.
    Mandrup-Poulsen T, Bendtzen K, Nerup J, Egeberg J, Nielsen JH. 1986. Mechanisms of pancreatic islet cell destruction. Allergy 41: 250–259.PubMedCrossRefGoogle Scholar
  4. 4.
    Hackel U, Klein J, Megenet R, Wagner F. 1975. Immobilization of microbial cells in polymeric matrices. Eur. J. Appl. Microbiol. Biotechnol. 1: 291–293.Google Scholar
  5. 5.
    Baardseth E. 1965. Localization and structure of alginate gels. In: Young EG, McLachlan JL, editors. Proceedings of the fifth international seaweed symposium. Oxford: Pergamon Press; p. 19–28.Google Scholar
  6. 6.
    Skjak-Braek G, Martinsen A. Applications of some algal polysaccharides in biotechnology. 1991. In: Guiry MD, Blunden G, editors. Seaweed resources in Europe: uses and potentials. John Wiley & Sons Ltd.; p. 219–257.Google Scholar
  7. 7.
    Klein J, Vorlop KD, Eng H, Kluge HM, Washausen P. 1979. Procedures for polymer entrapment of whole cells. Deutsche Gesellschaft für chemisches Apparatewesen. Monographien. 84: 274–276.Google Scholar
  8. 8.
    Gröhn P, Klöck G, Schmitt J, Zimmermann U, Horcher A, Bretzel RG, Hering BJ, Brandhorst D, Brandhorst H, Zekorn T, Federlin K. 1994. Largescale production of Ba2+-alginate-coated islets of Langerhans for immunoisolation. Exp. Clin. En-docrinol. 102: 380–387.CrossRefGoogle Scholar
  9. 9.
    Lim F, Sun A. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210: 908–910.PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmermann U, Klück G, Federlin K, Hannig K, Kowalski M, Bretzel RG, Horcher A, Entenmann H, Siebers U, Zekorn T. 1992. Production of mitogencontamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow elec-trophoresis. Electrophoresis 13: 269–274.PubMedCrossRefGoogle Scholar
  11. 11.
    Klöck G, Frank H, Houben R, Zekorn T, Horcher A, Siebers U, Woehrle M, Federlin K, Zimmermann U. 1994. Production of purified alginates suitable for use in immunoisolated transplantation. Appl. Microbiol. Biotechnol. 40: 638–643.PubMedCrossRefGoogle Scholar
  12. 12.
    Otterlei M, Ostgaard K, Skjak-Braek G, Smidsrod O, Soon-Shiong P, Espevik T. 1991. Induction of cy tokine production from human monocytes stimulated with alginate. J. Immunother. 10: 286–291.PubMedCrossRefGoogle Scholar
  13. 13.
    Espevik T, Otterlei M, Skjak-Braek G, Ryan L, Wright SD, Sundan A. 1993. The involvement of CD 14 in stimulation of cytokine production by uronic polymers. Eur. J. Immunology 23: 255–261.CrossRefGoogle Scholar
  14. 14.
    Mai GT, Seow WK, Pier GB, McCormack JG, Thong YH. 1993. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physiochemical, alginase, and specific monoclonal antibody treatments. Infection and Immunity 61: 559–564.PubMedGoogle Scholar
  15. 15.
    Zekorn T, Klöck G, Horcher A, Siebers U, Woehrle M, Kowalski M, Arnold MW, Federlin K, Bretzel RG, Zimmermann U. 1992. Lymphoid activation by different crude alginates and the effect of purification. Transpl. Proc. 24: 2952–2953.Google Scholar
  16. 16.
    Zekorn TDC, Horcher A, Meliert J, Siebers U, Altug T, Emre A, Hahn H-J, Federlin K. 1996. Biocompatibility and immunology in encapsulation of islets of Langerhans (bioartificial pancreas). Int. J. Artif. Organs 19: 251–257.PubMedGoogle Scholar
  17. 17.
    Uludag H, Hwang JR, Sefton MJ. 1995. Microencapsulated human hepatoma cells: capsule-to-capsule variations in protein secretion and permeability. J. Control. Release 33(2): 273–283.CrossRefGoogle Scholar
  18. 18.
    Wang T, Lacik I, Brissiva M, Anilkumar AV, Prokop A, Hunkeler D, Green R, Shahrokhi K, Powers AC. 1997. A new generation capsule and encapsulation system for immunoisolation of pancreatic cells. Nature Biotechnology 15: 358–362.PubMedCrossRefGoogle Scholar
  19. 19.
    Kierstan M, Bucke C. 1977. Immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 19: 387–397.PubMedCrossRefGoogle Scholar
  20. 20.
    Cheetham PSJ, Garrett C, Clark J. 1985. Isomaltose production using immobilized cells. Biotechnol. Bioeng. 27:471–480.CrossRefGoogle Scholar
  21. 21.
    Duff RG. 1985. Microencapsulation technology: A novel method for monoclonal antibody production. Trends Biotechnol. 3: 167–170.CrossRefGoogle Scholar
  22. 22.
    Haug A. 1964. Composition and properties of alginates. Rep. Norw. Inst. Seaweed Res. 30: 25–45.Google Scholar
  23. 23.
    Smidsrød O, Haug A. 1972. Properties of poly(l,4-hexuronates) in gel state. II. Comparison of gels of different chemical composition. Acta Chem. Scand. 26: 79–88.CrossRefGoogle Scholar
  24. 24.
    Burns MA, Kvesitadze GI, Graves DJ. 1985. Dried calcium alginate/magnetite spheres: A new support for Chromatographie separations and enzyme immobilization. Biotechnol. Bioeng. 27: 137–145.PubMedCrossRefGoogle Scholar
  25. 25.
    Rochefort WE, Rehg T, Chau PC. 1986. Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol. Lett. 8: 115–120.CrossRefGoogle Scholar
  26. 26.
    Rha CK. 1984. Chitosan as a biomaterial. In: Colwell RR, Pariser ER, Sinskey AJ, editors. Biotechnology in marine sciences. New York: Wiley; p. 177–189.Google Scholar
  27. 27.
    Veliky IA, Williams RE. 1981. The production of ethanol by Saccharomyces cerevisiae immobilized in polycation-stabilized calcium alginate gels. Biotechnol. Lett. 33: 275–280.CrossRefGoogle Scholar
  28. 28.
    Rosevar A. Improvements in composite materials. European Patent 048109A2.Google Scholar
  29. 29.
    Kitajima M, Sekiguchi W, Kondo A. 1971. A modification of red blood cells by isocyanates. Bull Chem. Soc. Jap. 44: 139–143.CrossRefGoogle Scholar
  30. 30.
    Sato T, Chiba T, Yoshinaga K, Kitajima M, Tershima M. 1988. Improvement of in vivo stability of alginate-polylysine capsules. Tohuku J. Exp. Med. 155:271–274.CrossRefGoogle Scholar
  31. 31.
    Zekorn TDC, Horcher A, Siebers U, Schnettler R, Hering B, Zimmermann U, Bretzel RG, Federlin K. 1992. Barium-cross-linked alginate beads: A simple, one-step-method for successful immuno isolated transplantation of islets of Langerhans. Acta Diaetologica 29: 99–106.CrossRefGoogle Scholar
  32. 32.
    Zekorn T. unpublished data.Google Scholar
  33. 33.
    Zekorn T, Siebers U, Horcher A, Schnettler R, Zimmermann U, Bretzel RG, Federlin K. 1992. Alginate coating of islets of Langerhans: In vitro studies on a new method for immuno isolated transplantation. Acta Diabetologica 29: 41–45.PubMedCrossRefGoogle Scholar
  34. 34.
    De Vos P, De Haan B, Pater J, Van Schilfgaarde R. 1996. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 62: 893–899.PubMedCrossRefGoogle Scholar
  35. 35.
    Fritschy WM, Wolters GHJ, van Schilfgaarde R. 1991. Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40: 37–43.PubMedCrossRefGoogle Scholar
  36. 36.
    De Vos P, Nieuwenhuizen A, De Haan BJ, van Schilfgaarde R. 1997. An imbalance between betacell birth and beta-cell death contributes to failure of encapsulated islet grafts. Diabetologia 40 (Suppl. 1): A124.CrossRefGoogle Scholar
  37. 37.
    Christenson L, Aebischer P, McMillan P, Galletti PM. 1989. Tissue reaction to intraperitoneal polymer implants: Species difference and effects of corticoid and doxyrubicin. J. Biomed. Mater. Res. 23: 705–718.PubMedCrossRefGoogle Scholar
  38. 38.
    Cole DR, Waterfall M, Mclntyre M, Baird JD. 1992. Microencapsulated islet grafts in the BB/E rat: a possible role for cytokines in graft failure. Diabetologia 35:231–237.PubMedCrossRefGoogle Scholar
  39. 39.
    Woehrle M, Markman JF, Silvers WK, Barker CF, Naji A (1986) Transplantation of cultured pancreatic islets to BB rats. Surgery 10: 334–341.Google Scholar
  40. 40.
    Wijsman J, Atkinson P, Mazaheri R, Garcia B, Paul T, Vose J, O’Shea G, Stiller C. 1992. Histological and immunopathological analysis of recovered encapsulated allogeneic islets from transplanted diabetic BB/W rats. Transplantation 54: 588–592.PubMedCrossRefGoogle Scholar
  41. 41.
    Siebers U, Sturm R, Planck H, Zschocke P, Bretzel RG, Zekorn T, Federlin K. 1990. Morphological studies on biocompatibility of membranes for immunoisolated islet transplantation. Horm. Metabol. Res. Suppl. 25: 206–208.Google Scholar
  42. 42.
    Darqui S, Chicheportiche D, Capron F, Boitard C, Reach G. 1990. Comparative study of microencapsulated rat islets implanted in different diabetic models in mice. In: Federlin K, Bretzel RG, Hering BJ, editors. Methods in islet transplantation research. Horm. Metabol. Res. Suppl. 25: 209–213.Google Scholar
  43. 43.
    Krüncke K-D, Funda J, Berschick B, Kolb H, KolbBachofen V. 1991. Macrophage cytotoxicity towards isolated rat islet cells: Neither lysis nor its protection by nicotinamide are beta-cell specific. Diabetologia 24: 232–238.CrossRefGoogle Scholar
  44. 44.
    Horcher A, Zekorn T, Siebers U, Klöck G, Frank, H, Houben R, Bretzel RG, Zimmermann U, Federlin K. 1994. Transplantation of microencapsulated islets in rats: Evidence for induction of fibrotic overgrowth by islet allo-antigens released from microcapsules. Transpl. Proc. Transpl. Proc. 26(2): 784–786.Google Scholar
  45. 45.
    Zekorn TDC, Endl U, Horcher A, Siebers U, Bretzel RG, Federlin K. 1995. Evidence for antigen-release induced cellular immune response against alginatepolylysine encapsulated islets. Xenotransplantation 2: 116–119.CrossRefGoogle Scholar
  46. 46.
    Vandenbossche GMR, Bracke ME, Cuvelier CA, Border HE, Marbel MM, Remon J-P. 1993. Host reaction against alginate-polylysine microcapsules containing living cells. J. Pharm. Pharmacol. 45: 121–125.PubMedCrossRefGoogle Scholar
  47. 47.
    Zekorn T, Horcher A, Siebers U, Federlin K, Bretzel RG. 1999. Synergistic effect of microencapsulation and immunoalteration on islet allograft survival in bioartificial pancreas. J. Mol. Med. 77:193–198.PubMedCrossRefGoogle Scholar
  48. 48.
    Horcher A, Siebers U, Bretzel RG, Federlin K, Zekorn T. 1995. Transplantation of microencapsulated islets in rats: Influence of low temperature culture before and after the encapsulation procedure on graft function. Transpl. Proc. 27: 3232–3233.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Tobias D. C. Zekorn
  • Reinhard G. Bretzel

There are no affiliations available

Personalised recommendations