Skip to main content

Modulation of Membrane Permeability

  • Chapter
Cell Encapsulation Technology and Therapeutics

Abstract

A majority of mammalian cells, unlike bacterial cells, are anchorage-dependent (Young 1993), a fact that has encouraged the development of immobilization systems. One such, the adsorption or attachment technique (van Wezel 1967), whereby cells are adhered to the surface of microcarriers, suffers several drawbacks. Not only are the strength and stability of the adhesive bonds influenced by formulation and other factors, but the cells are exposed to the abrasion arising from the hydrodynamic forces in an agitated culture system. Although this is not a problem in bacterial culture, where cell walls are thick and protective, considerable cellular damage occurs in animal cells, which are fragile and highly vulnerable to shear forces (Croughan et al 1987). Furthermore, in cell transplantation therapy, this approach does not afford the cells the necessary immunoprotection. Another approach that has been investigated is cell entrapment in a polymer gel or porous matrix. Although this method enhances greatly the available surface, and hence the cell density of the system, the problems of vulnerability to shear and immune assault are at best only partially mitigated. An additional complication is that the gel structure may actually inhibit metabolic exchanges that are vital and, indeed critical, for cell surviability and viability. Encapsulation currently enjoys the widest acceptance and application, and has been used to modify both adsorbed cell and gel-entrapped cell systems for greater efficiency and effectiveness (Okhamafe and Goosen 1993, Young et al 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer P, Tresco PA, Winn SR, Green LA, Jaeger CB. 1991a. Long-term cross-species brain transplantation of a polymer encapsulated dopamine secreting cell line. Exp Neurol 111:269–275.

    Article  PubMed  CAS  Google Scholar 

  • Aebischer P, Wahlberg K, Jaeger CB, 1991b. Macroencapsulation capsulation of dopamine secreting cells by coextrusion with an organic polymer solution. Biomaterials 12:50–56.

    Article  PubMed  CAS  Google Scholar 

  • Aebischer P, Tan S, Deglon N, Heyd B, Zurn A, Baetga E, Sagot Y, Kato A. 1995. Encapsulation of neutrotrophic factor-releasing cells for the treatment of neurodegenerative diseases. Restor Neurol Neurosci 8:65–66.

    PubMed  CAS  Google Scholar 

  • Chang TMS. 1993. Living cells and microorganisms immobilized by microencapsulation inside artificial cells. In: Goosen MFA, editor. Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida: CRC Press, pp 183–196.

    Google Scholar 

  • Crank, J. 1975. The Mathematics of diffusion. Oxford: Clarendon Press.

    Google Scholar 

  • Crooks CA, Douglas JA, Broughton RL, Sefton MV. 1990. Microencapsulation of mammalian cells in HEMA-MMA copolymer: effects on capsule morphology and permeability. J Biomed Mater Res 24:1241–1247.

    Article  PubMed  CAS  Google Scholar 

  • Croughan MS, Hamel J-F, Wang DIC. 1987. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–135.

    Article  PubMed  CAS  Google Scholar 

  • Daly MM, Knorr D. 1988. Chitosan-alginate complex coacevate capsules: effect of calcium chloride, plasticizers, and polyelectrolytes on mechanical stability. Biotechnol Prog 4:76–83.

    Article  CAS  Google Scholar 

  • Dechesne JP, Delporte JP, Jaminet Fr, Venturas K. 1982. Influence of plasticizers on properties of applied films of Eudrajit L30D. J Pharm Belg 37:283–286.

    CAS  Google Scholar 

  • de la Rubin J, Carrai A, Montes H, Urquijo JJ, Sanz GF, Sanz MA. 1996. Successful treatment of hepatic venoocclusive disease in a peripheral blood progenitor cell transplant patient with a transjugular intrahepatic port systemic stent-shunt. Haematologica 81:536–539.

    Google Scholar 

  • Gentile FT, Doherty EJ, Rein DH, Shoichet MS, Winn SH. 1995. Polymer science for macroencapsulation of cells for central nervous system transplantation. Reactive polymers 25:207–227.

    Article  CAS  Google Scholar 

  • Gharapetian H, Maleki M, O’Shea GM, Carpenter RC, Sun AM. 1987. Polyacrylate microcapsules for cell encapsulation: effects of copolymer structure on membrane properties. Biotechnol Bioeng 30:775–779.

    Article  PubMed  CAS  Google Scholar 

  • Goosen MFA. 1987. Insulin delivery system and the encapsulation of cells for medical and industrial use. CRC Crit Rev Biocompat 3:1–24.

    CAS  Google Scholar 

  • Goosen MFA. 1993. Toxicity, biocompatibility, and mass transfer effects in immobilized cell systems. In: Goosen MFA, editor. Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida: CRC Press, pp 55–78.

    Google Scholar 

  • Goosen MFA, King GA, Daugulis AJ, Faulkner P. 1990. Multiple membrane encapsulation. U.S. Patent 4, 942, 129.

    Google Scholar 

  • Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM. 1985. Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotech Bioeng 27:146–150.

    Article  CAS  Google Scholar 

  • Jarvis AP, Grdina TA. 1983. Production of biologicals from microencapsulated cells. Biotechniques 1:24–29.

    Article  Google Scholar 

  • Kim SK, Rha C. 1989. Transmembrane permeation of proteins in chitosan capsules. In: Skjaek-Braek G, Anthosen T, Sandford P, editors. Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. London: Elsevier, pp 635–642.

    Google Scholar 

  • King GA, Daugulis AJ, Faulkner P, Goosen MFA. 1987. Alginate-polylysine microcapsules of controlled membrane molecular weight cut off for mammalian cell culture engineering. Biotechnol Progr 3(4):231–239.

    Article  CAS  Google Scholar 

  • Knorr D, Daly M. 1988. Mechanics and diffusional changes observed in multilayer chitosan/alginate coacervate capsules. Process Biochem 23:48–50.

    CAS  Google Scholar 

  • Lim F, Sun AM. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–911.

    Article  PubMed  CAS  Google Scholar 

  • McKnight CA. 1987. Chemical modification of chitosan for the microencapsulation of mammalian cells. M.Sc Thesis. Queen’s University, Kingston, Canada.

    Google Scholar 

  • Okhamafe AO, Amsden B, Chu W, Goosen MFA. 1996. Modulation of protein release from chitosan-alginate microcapsules using the pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate. J Microencap 13:497–508.

    Article  CAS  Google Scholar 

  • Okhamafe AO, Goosen MFA. 1993. Control of membrane permeability in microcapsules. In: Goosen MFA, editor. Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida: CRC Press, pp 55–78.

    Google Scholar 

  • Okhamafe AO, Iwebor HU. 1987. Moisture permeability mechanisms of some aqueous-based tablet film coatings containing soluble additives. Pharmazie 42:611–613.

    PubMed  CAS  Google Scholar 

  • Okhamafe AO, York P. 1985a. Interaction phenomena in some aqueous-based tablet coating polymer systems. Pharm Res 2:19–23.

    Article  Google Scholar 

  • Okhamafe AO, York P. 1985b. Stress crack resistance of some pigments and unpigmented tablet film coating systems. J Pharm Pharmacol 37:449–454.

    Article  PubMed  CAS  Google Scholar 

  • Okhamafe AO, York P. 1987. Interaction phenomena in pharmaceutical film coatings and testing methods. Int J Pharm 39:1–21.

    Article  CAS  Google Scholar 

  • Okhamafe AO, York P. 1988. Studies of interaction phenomena in aqueous-based film coatings containing soluble additives using thermal analysis techniques. J Pharm Sci 77:435–444.

    Article  Google Scholar 

  • O’Neill WP. 1980. Membrane systems. In: Kydonieus AF, editor Controlled release technologies: methods, theory and applications. Vol. 2. Boca Raton, Florida: CRC Press. Chap 4.

    Google Scholar 

  • O’Shea GM, Goosen MFA, Sun AM. 1984. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. BBA 804:113–117.

    Google Scholar 

  • Polk AE. 1990. Development of chitosan-alginate microcapsules for the oral delivery of vaccines in aquaculture. M.Sc. Thesis, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Porter SC. 1982. The practical significance of the permeability and mechanical properties of polymer films used for the coating of pharmaceutical dosage forms. Int J Pharm Technol Prod Manuf 3:21–25.

    CAS  Google Scholar 

  • Posillico EG. 1986. Microencapsulation technology for large-scale antibody production. Bio-Technology 4:114–117.

    CAS  Google Scholar 

  • Richards JH. 1985. The role of polymer permeability in the control of drug release. In: Comyn J, editor. Polymer permeability. London: Elsevier, pp 217–267.

    Chapter  Google Scholar 

  • Rogers CE. 1976. Structural factors governing controlled release. In: Paul DR, Harris FW, editors. ACS Symposium Series 33. Washington, D.C.: American Chemical Society, pp 15–25.

    Google Scholar 

  • Ronel SH, D’Andrea MJ, Hashiguchi H, Klomp GF, Dobelle WH. 1983. Macroporous hydrogel membranes for a hybrid artificial pancreas. I. Synthesis and chamber fabrication. J Biomed Mater Res 17:855–863.

    Article  PubMed  CAS  Google Scholar 

  • Rowe RC. 1976. The effect of molecular weight on the properties of films prepared from hydroxypropyl methylcellulose. Pharm Acta Helv 51:330–334.

    PubMed  CAS  Google Scholar 

  • Rowe RC, Forse SF. 1980. The effect of polymer molecular weight on the incidence of film cracking and splitting on film-coated tablets. J Pharm Pharmacol 32:583–584.

    Article  PubMed  CAS  Google Scholar 

  • Rowe RC, Kotaras AD, White EFT. 1984. An evaluation of the plasticizing efficiency of the dialkyl phthalates in ethylcellulose films using the torsional braid pendulum. Int J Pharm 22:57–62.

    Article  CAS  Google Scholar 

  • Sakellariou P, Rowe RC, White EFT. 1986. An evaluation of the interaction and plasticizing efficiency of the polyethylene glycols in ethylcellulose and hydroxypropyl methylcellulose films using torsional braid pendulum. Int J Pharm 3:55–64.

    Article  Google Scholar 

  • Sato, K. 1980. The internal stress of coating films, Prog. Org.Coat., 8, 143–148.

    Article  CAS  Google Scholar 

  • Sefton MV, Blysniuk J, Broughton RL, Dawson RM, Sugamori ME. 1987. Microencapsulation of mammalian cells in a water-insoluble polyacrylate by coextrusion and interfacial precipitation. Biotechnol Bioeng 29:1135–1143.

    Article  PubMed  CAS  Google Scholar 

  • Shioya T, Rha C. 1989. Transmembrane permeability of chitosan/carboxymethyl cellulose capsule. In: SkjaekBraek G, Anthosen T, Sandford P, editors. Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. London: Elsevier, pp 627–634.

    Google Scholar 

  • Sun AM, O’Shea GM, Goosen MFA. 1983. Injectable microencapsulated islet cells as a bioartificial pancreas. Appl Biochem Biotechnol 9:87–95.

    Google Scholar 

  • van Wezel AL. (1967). Growth of cell strains and primary cells on microcarriers in homogenous culture. Nature (London) 216:64–69.

    Article  Google Scholar 

  • Yoshioka T, Hirano R, Shioya T, Kako M. 1990. Encapsulation of mammalian cell with chitosan-CMC capsule. Biotechnol Bioeng 35:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Young DV. (1993). Inverted microcarriers: using microencapsulation to grow anchorage-dependent cells. In: Goosen MFA, editor. Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida: CRC Press, pp 243–266.

    Google Scholar 

  • Young DV, Dobbels S, King L, Deer F, Gillies SD. 1989. Inverted microcarriers: Using microencapsulation to grow anchorage-dependent cells in suspension. Biopharm 2:34–41.

    CAS  Google Scholar 

  • Zondervan GJ, Hoppen HJ, Pennings AJ, Fristchy W, Wolters G, van Schilfgaarde R. 1992. Biomaterials 13:136–144.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okhamafe, A.O., Goosen, M.F.A. (1999). Modulation of Membrane Permeability. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics