Skip to main content

Mass Transfer in Immobilized Cell Systems

  • Chapter
Cell Encapsulation Technology and Therapeutics

Abstract

Immobilized cell/bioactive agent systems have found applications in a variety of areas, including encapsulated cell therapy (Colton 1996, DeVos et al 1996, Lanza et al 1996, Stegemann and Sefton 1996), immobilized biocatalysts (Svec and Gemeiner 1995, Takizawa et al 1996), and polymeric drug-delivery systems (Gan et al 1996, Yao et al 1994). All, however, suffer from specific mass transfer problems. In the case of immobilized cells, oxygen must be able to reach the viable cells at a sufficient rate to keep the cells alive, while the desired prodduct, such as insulin in the case of diabetes treatment, must be able to diffuse out of the capsule, along with low molecular weight waste products With biocatalysts, whether they be enzymes or cells, the substrate must be able to reach the bead/capsule interior to allow the biochemical reaction to occur, and the desired products must be able to diffuse out of the bead. Similarly with drug-delivery systems, the release of the bioactive agent from the polymer matrix or capsule must be controlled so as to give a constant steady release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, JE and Ollis, DF (eds). (1986). In: Biochemical Engineering Fundamentals 2nd edition. McGraw-Hill Book Co., NY, Chapter 7.

    Google Scholar 

  • Bugarski B, Smith J, Wu J, and Goosen MFA. 1993. Methods of Animal Cell Immobilization Using Electrostatic Droplet Generation. Biotechnol. Tech 6(9) 677–682.

    Article  Google Scholar 

  • Bugarski B, Li Q, Goosen MFA, Poncelet D, Neufeld R, and Vunjak G. 1994. Electrostatic Droplet Generation: Mechanism of Polymer Droplet Formation. AIChE. J 440(6), 1026–1031.

    Article  Google Scholar 

  • Chang, HN and Moo-Young, M. 1988. Appl. Microbiol Biotechnol 29, 107.

    Article  CAS  Google Scholar 

  • Colton, CK. 1996. Engineering Challenges in Cellencapsulation Technology. TIBTECH. Vol. 14.

    Google Scholar 

  • Deckwer, WD, Burckhart, R, and Zoll, R. 1974. Mixing and Mass Transfer in Tall Bubble Columns. Chemical Engineering Science. 29, 2177–2188.

    Article  CAS  Google Scholar 

  • De Vos P, De Haan B, Pater J, and Van Schilfgaarde R. 1996. Association Between Capsule Diameter, Adequacy of Encapsulation, and Survival of Microencapsulated Rat Islet Allografts. Transplantation. 62, 893–899, No. 7.

    Article  PubMed  Google Scholar 

  • Frame KK and Hu WS. 1988. Biotechnol Bioeng. 32, 1061.

    Article  PubMed  CAS  Google Scholar 

  • Gan K-H, Geus WP, Bakker W, Lamer CBHW, and Heijerman, HGM. 1996. In: Vitro Dissolution Profiles of Enteric-Coated Microsphere/Microtablet Pancreatin Preparations at Different pH Values. Aliment. Pharmacol. Ther. 10, 111–115.

    Article  Google Scholar 

  • Goosen MFA, O’Shea GM, Gharapetian MM, and Sun AM. 1986. Immobilization of Living Cells in Biocompatible Semipermeable Microcapsules: Biomèdical and Potential Biochemical Engineering Applications. In: Polymers in Medicine. Chiellini E. (ed.) Plenum Publishing, New York, p. 235.

    Chapter  Google Scholar 

  • Goosen MFA, Mahmoud ESE, Al-Ghafri AS, Al-Hajry HA, Al-Sinani YS, and Bugarski B. 1996. Immobilization of Cells Using Electrostatic Droplet Generation. In: Methods in Molecular Biology: Immobilization Enzymes and Cells. Bickerstaff G. (ed). Human Press, Totow, NJ.

    Google Scholar 

  • Goosen MFA, Al-Ghafri AS, El-Mardi O, Al-Belushi MIJ, Al-Hajry HA, Mahmoud ESE, and Consolacion V. 1997. Electrostatic Droplet Generation for Encapsulation of Somatic Tissue: Assessment of High-Voltage Power Supply. Biotechnology Progress. 13(4), 497–502.

    Article  CAS  Google Scholar 

  • Gosmann, B and Rehn, HJ. 1988. App. Microbiol Biotechnol. 29, 554.

    Article  CAS  Google Scholar 

  • Heath C and Beifort G. 1987. Immobilization of Suspendead Mammalian Cells: Analysis of Hollow Fiber and Microcapsule Bioreactors. Advances in Biochemical Engineering/Biotechnology 34, 1–31.

    Article  PubMed  CAS  Google Scholar 

  • King GA, Daugulis AJ, Faulkner P, and Goosen MFA. 1987. Alginate-Polylysine Microcapsules of Controlled Membrane Molecular Weight Cut-off for Mammalian Cell Culture Engineering. Biotechnology Progress. 3, 231–240.

    Article  CAS  Google Scholar 

  • Klein J, Stock J, and Vorlop DK. 1993. Pore Size and Properties of Spherical Calcium Alginate Biocatalysts. Eur. J. Appl. Microb. Biotechnol. 18, 86.

    Article  Google Scholar 

  • Lanza RP, Hayes JL, and Chick WL. 1996. Encapsulated Cell Technology. Nature Biotechnology. 14.

    Google Scholar 

  • Linek V, Vacek V, and Benes P. 1987. A Critical Review and Experimental Verification of the Correct Use of the Dynamic Method for the Determination of Oxygen Transfer in Aerated Agitated Vessels to Water, Electrolyte Solutions and Viscous Liquids. Chemical Engineering Journals. 34, 11–34.

    Article  CAS  Google Scholar 

  • McCabe WL and Smith JC. 1985. Units of Chemical Engineering. McGraw-Hill, New York, 602.

    Google Scholar 

  • Morgensen AO and Vieth WR. 1973. Mass transfer and biochemical reaction with semipermeable microcapsules. Biotechnol. Bioeng. 15, 467–481.

    Article  Google Scholar 

  • Moo-Young M and Blanch JW. 1983. Kinetics and Transport Phenomena in Biological Reactor Design. Biochemical Engineering.

    Google Scholar 

  • Sharp NA, Daugulis AJ, and Goosen MFA. 1998. Hydrodynamic and Mass Transfer Studies in an ExternalLoop Air-Lift Bioreactor for Immobilized Animal Cell Culture. Applied Biochemistry and Biotechnology. 73(1), 59–77.

    Article  CAS  Google Scholar 

  • Shigeta J. 1995. Germination and Growth of Encapsulated Somatic Embryos of Carrot for Mass Propagation. Biotechnol. Tech. 10(9), 771–776.

    Article  Google Scholar 

  • Siegel MH and Merchuk JC. 1988. Mass Transfer in a Rectangular Air-Lift Reactor: Effects of Geometry and Gas Circulation. Biotechnology and Bioengineering. 32, 1128–1137.

    Article  PubMed  CAS  Google Scholar 

  • Stegemann JP and Sefton MV. 1996. Video Analysis of Submerged Jet Microencapsulation Using HRMAMMA. Canadian Journal of Chemical Engineering. 74, 518–525.

    Article  CAS  Google Scholar 

  • Svec F and Gemeiner P. 1995. Engineering Aspects of Carriers for Immobilized Biocatalysts. Biotechnology and Genetic Engineering Reviews. 13.

    Google Scholar 

  • Takizawa S, Aravinthan V, and Fujita K. 1996. Nitrogen Removal from Domestic Wastewater Using Immobilized Bacteria. Wat. Sci. Tech. 34(1-2) 431–440.

    Article  CAS  Google Scholar 

  • Teng W-L, Liu Y-J, Tsai V-C, and Soong T-S. 1994. Somatic Embryogenesis of Carrot in Bioreactor Culture Systems. Hort. Sci. 29(11) 1349–1352.

    Google Scholar 

  • Van’t Riet K. 1979. Review of Measuring Methods and Results in Nonviscous Gas-Liquid Mass Transfer in Stirred Vessels. Ind. Eng. Chem. Process Des. Dev. 18, 357–364.

    Article  Google Scholar 

  • Yao K, Peng T, Xu M, and Yuan C. 1994. pH-Dependent Hydrolysis and Drug Release of Chitosan/Polyether Interpenetrating Polymer Network Hydrogel. Polymer Intl. 34, 213–219.

    Article  CAS  Google Scholar 

  • Yuet PK, Kwok W, Harris TJ, and Goosen MFA. Mathematical Modeling of Protein Diffusion and Cell Growth. In: Fundamentals of Animal Cell Encapsulation and Immobilization. Goosen MFA. (Ed.) 1993). CRC Press, Boca Raton, Florida, p. 79–112

    Google Scholar 

  • Yuet PK, Harris J, and Goosen MFA. 1995. Mathematical Modelling of Immobilized Animal Cell Growth. J. Artif. Cells, Blood Substitutes and Immobilization Biotechno. 23, 1, 109–133.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goosen, M.F.A. (1999). Mass Transfer in Immobilized Cell Systems. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics