Skip to main content

Poly(ethylene glycol)

  • Chapter

Abstract

The demands placed on a material to be used for microencapsulation are stringent. The material should (1) be stable in the physiological environment over several years, (2) not engender any cytotoxicity, (3) be permselective so as to be immunoprotective and yet allow nutrient and metabolite access, and (4) be biocompatible so as not to elicit an inflammatory or fibrotic response from the host. Of the wide range of materials used, ionically coacervated microcapsules of alginate and poly(1-lysine) (PLL) have shown promise. O’Shea and Sun (1986) demonstrated rat islet survival times of 2 to 3 months, and occasionally of 1 year, in mice, using alginate/PLL/alginate trilayered microcapsules. The xenografts apparently failed as a result of over-growth with fibroblast-like and macrophage-like cells upon the microcapsules. This cellular overg-rowth is due to a nonspecific foreign body reaction elicited by the microcapsules and is by no means restricted to alginate/PLL/alginate microcapsules. Roberts et al, using HEMA-MMA copolymers for microencapsulation, also reported seeing up to a 10 μJim thick layer of cellular overgrowth after 4 weeks in vivo (Roberts et al 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade JD, Hlady V. 1986. Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses. Adv Polym Sci 79:1–63.

    Article  CAS  Google Scholar 

  • Andrade JD, Nagoaka S, Cooper S, Okano T, Kim SW. 1987. Surfaces and blood biocompatibility. Current hypothesis. ASAIO Trans 10:75–76.

    Article  Google Scholar 

  • Buck CA, Horwitz AF. 1987. Cell surface receptors for extracellular matrix molecules. Ann Rev Cell Biol 3:179–205.

    Article  PubMed  CAS  Google Scholar 

  • Dawson RM, Broughton RL, Stevenson WTK, Sefton MV. 1987. Microencapsulation of CHO cells in a hydroxyethyl methacrylate-methyl methacrylate copolymer. Biomaterials 8:360–366.

    Article  PubMed  CAS  Google Scholar 

  • Dupuy B, Gin H, Baquey C, Ducassou D. 1988. In vitro polymerization of a microencapsulating medium around living cells. J Biomed Mater Res 22:1061–1070.

    Article  PubMed  CAS  Google Scholar 

  • Fan M-Y, Lum Z-P, Fu X-W, Levesque L, Tai IT, Sun AM. 1990. Reversal of diabetes in BB rats by transplantation of encapsulated pancreatic islets. Diabetes 39:519–522.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara K, Nakabayashi N. 1990. Adhesive bone cement both to bone and metals: 4-META in MM A initiated with tri-n-butyl borane. J Biomed Mater Res 23:1475–1482.

    Article  Google Scholar 

  • Kam TI. 1990. Effects of visible radiation on cultured cells. Photochem and Photobiology 53(6): 1089.

    Google Scholar 

  • Kobayashi H, Hyon S-H, Ikada Y. 1991. Water-curable and biodegradable prepolymers. J Biomed Mater Res 25:1481–1494.

    Article  PubMed  CAS  Google Scholar 

  • Koehnlein HE, Lemperle G. 1969. Experimental studies with a new gelatin-resorcin-formaldehyde glue. Surgery 66:377–382.

    PubMed  CAS  Google Scholar 

  • Lacy PE, Hegre OD, Gerasimidi-Vazeou A. 1991. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254:1782–1784.

    Article  PubMed  CAS  Google Scholar 

  • Lim F, Sun AM. 1980. Microencapsulated islets as a bioartificial pancreas. Science 210:908–910.

    Article  PubMed  CAS  Google Scholar 

  • Luckham P, Klein J. 1985. Interactions between smooth solid surfaces in solutions of adsorbing and nonadsorbing polymers in good solvent conditions. Macromolecules 18:721.

    Article  CAS  Google Scholar 

  • Lyman MD, Melanson, D, Sawhney, AS. 1996. Characterization of the formation of interfacially photopolymerized thin hydrogels in contact with arterial tissue. Biomaterials 17:359–364.

    Article  PubMed  CAS  Google Scholar 

  • McMahon J, Schmid S, Weislow O, Stinson S, Camalier R, Gulakowski R, Shoemaker R, Kiser R, Dykes D, Harrison S, Mayo J, Boyd MJ. 1990. Feasibility of cellular microencapsulation technology for evaluation of anti-human immunodeficiency virus drugs in vivo. J Natl Cancer Inst 82:1761.

    Article  PubMed  CAS  Google Scholar 

  • O’Shea GM, Goosen MFA, Sun AM. 1984. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim Biophys Acta 804:133–136.

    Article  PubMed  Google Scholar 

  • O’Shea GM, Sun AM. 1986. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes 35:943–946.

    Article  PubMed  Google Scholar 

  • Pathak CP, Sawhney AS, Hubbell JA. 1992. Rapid photopolymerization of immunoprotective gels in contact with cells and tissue. J Am Chem Soc 114:8311–8312.

    Article  CAS  Google Scholar 

  • Potts TV, Petrou A. 1991. Argon laser initiated resin photopolymerization for the filling of root canals in human teeth. Lasers Surg Med 11:257–262.

    Article  PubMed  CAS  Google Scholar 

  • Roberts T, deBoni T, Sefton MV. 1991. Microencapsulation of dopamine secreting cells (PC 12) in a HEMAMMA copolymer. Trans Soc Biomater 14:157.

    Google Scholar 

  • Ronis ML, Harvick JD, Fung R, Dellavecchia M. 1984. Review of cyanoacrylate tissue glues with emphasis on their otorhinolaryngological applications. Laryngoscope 94:210–213.

    Article  PubMed  CAS  Google Scholar 

  • Sawhney AS. 1992. Biocompatible microspheres and microcapsules for animal tissue encapsulation and transplantation. Dissertation. University of Texas at Austin, Austin, Texas.

    Google Scholar 

  • Sawhney AS, Hubbell JA. 1992. Polyethylene oxide)graft-poly(l-lysine) copolymers to enhance the biocompatibility of poly(l-lysine)-alginate microcapsule membranes. Biomaterials 13:863–870.

    Article  PubMed  CAS  Google Scholar 

  • Sawhney AS, Pathak CP, Hubbell JA. 1994. Modification of Langerhans surfaces with immunoprotective poly(ethylene glycol) coatings. Biotech Bioeng 44:383–386.

    Article  CAS  Google Scholar 

  • Tanaka A, Yasuhara S, Osumi M, Fukui S. 1977. Immobilization of yeast microbodies by inclusion with photocrosslinkable resins. Eur J Biochem 80:193–197.

    Article  PubMed  CAS  Google Scholar 

  • Yashon D, Jane JA, Gordon MC. 1966. Effects of methyl-2-cyanoacrylate adhesives on the somatic vessels and the central nervous system of animals. J Neurosurg 25:883–888.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sawhney, A.S. (1999). Poly(ethylene glycol). In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics