Skip to main content

Mathematics of Thermochemistry

  • Chapter
Multicomponent Flow Modeling

Abstract

In this chapter we investigate the mathematical properties of thermodynamic functions and chemistry source terms. We first specify the mathematical assumptions associated with thermodynamics and investigate smoothness, convexity and differentials of various functionals. A fundamental alternative arises, however, concerning the mathematical thermodynamic formalism to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Boillat, Existence and Uniqueness of the Solution to the Edge Problem in a Two-Dimensional Reactive Boundary Layer, Math. Mod. Meth. Appl. Sci., 5, (1995), pp. 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1, (1985), pp. 1–1856.

    Article  Google Scholar 

  3. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, (1984).

    Google Scholar 

  4. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, New Series “Monographs”, m 24, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  5. M. Feinberg, The Existence and Uniqueness of Steady States for a Class of Chemical Reaction Networks, Arkiv Rat. Mech. Anal, 132, (1995), pp. 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Feinberg, Multiple Steady States for Chemical Reaction Networks of Deficiency One, Arkiv Rat. Mech. Anal, 132, (1995), pp. 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Giovangigli, Plane Flames with Multicomponent Transport and Complex Chemistry, Math. Mod. Meth. Appl. Sci., 9, (1999), pp. 337–378.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Giovangigli and M. Massot, Asymptotic Stability of Equilibrium States for Multicomponent Reactive Flows, Math. Mod. Meth. Appl. Sci., 8, (1998), pp. 251–297.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Giovangigli and M. Smooke, Extinction Limits of Strained Premixed Laminar Flames with Complex Chemistry, Comb. Sci. Tech., 53, (1987), pp. 23–49.

    Article  Google Scholar 

  10. E. A. Guggenheim, Thermodynamics, Interscience, New York, (1957).

    MATH  Google Scholar 

  11. F. J. M. Horn, Necessary and Sufficient Conditions for Complex Balancing in Chemical Kinetics, Arch. Rational Mech. Anal., 49, (1972), pp. 172–186.

    Article  MathSciNet  Google Scholar 

  12. F. J. M. Horn and R. Jackson, General Mass Action Kinetics, Arch. Rational Mech. Anal, 47, (1972), pp. 81–116.

    Article  MathSciNet  Google Scholar 

  13. F. J. Krambeck, The Mathematical Structure of Chemical Kinetics, Arch. Rational Mech. Anal., 38, (1970), pp. 317–347.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Meixnier, Zur Thermodynamik der Irreversiblen Prozesse in Gases mit Chemish Reagierenden, Dissoziierenden und Anregbaren Komponent, Annalen der Physik, 5, (1943), pp. 244–270.

    Article  Google Scholar 

  15. J. Pousin, Modélisation et Analyse Numérique de Couches Limites Réactives d’Air, Doctorat es Sciences, Ecole Polytechnique Fédérale de Lausanne, 1112, (1993).

    Google Scholar 

  16. N. Z. Shapiro and L. S. Shapley, Mass Action Law and the Gibbs Free Energy Function, SIAM J. Appl. Math., 13, (1965), pp. 353–375.

    Article  MathSciNet  Google Scholar 

  17. D. R. Stull and H. Prophet, JANAF Thermochemicai Tables, Second ed., Washington, NBS NSRDS-NBS37, (1971).

    Google Scholar 

  18. A. Vol’pert and S. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Mechanics: Analysis 8, Martinus Nijhoff Publishers, Dordrecht, (1985).

    Google Scholar 

  19. F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, (1985).

    Google Scholar 

  20. L. C. Woods, The Thermodynamics of Fluid Systems, Oxford Eng. Sci. Series, 2, (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovangigli, V. (1999). Mathematics of Thermochemistry. In: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1580-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1580-6_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7202-1

  • Online ISBN: 978-1-4612-1580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics