Skip to main content

Derivation from the Kinetic Theory

  • Chapter
  • 554 Accesses

Abstract

In this chapter, we summarize the derivation of multicomponent reactive flow equations from the kinetic theory of gases. This derivation can be found in numerous textbooks, usually for monatomic species mixtures and/or inert species. In this chapter, we consider the general case of dilute polyatomic reactive gas mixtures. We refer the reader, however, to classical textbooks on kinetic theory [CC70] [FK72] [Mal90] [Mal91] for detailed comments or intermediate calculations since we only give here a brief description. In addition, mathematical aspects of Boltzmann-type equations are out of the scope of this book, and we refer the reader to [Cer88], [DL89], [Gru93], [CIP94], [GG95], and [GM97].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. V. Alexeev, A. Chikhaoui, and I. T. Grushin, Application of the Generalized Chapman-Enskog Method to the Transport-Coefficient Calculation in a Reacting Gas Mixture, Phys. Review E, 49, (1994), pp. 2809–2825.

    Article  Google Scholar 

  2. C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, Volume 67, Springer-Verlag, Berlin, (1988).

    Google Scholar 

  3. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, Volume 106, Springer-Verlag, Berlin, (1994).

    Google Scholar 

  4. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, (1970).

    Google Scholar 

  5. C. F. Curtiss, Symmetric Gaseous Diffusion Coefficients, J.Chem. Phys., 49, (1968), pp. 2917–2919.

    Article  Google Scholar 

  6. C. F. Curtiss and J. O. Hirschfelder, Transport Properties of Multicomponent Gas Mixtures, J. Chem. Phys., 17, (1949), pp. 550–555.

    Article  Google Scholar 

  7. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, Dover, New York, (1984).

    Google Scholar 

  8. R. J. DiPerna and P. L. Lions, On the Global Existence for Boltzmann equations: Global Existence and Weak Stability, Ann. Math., 130, (1989), pp. 321–366.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, New Series “Monographs,” m 24, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  10. A. Ern and V. Giovangigli, The Kinetic Equilibrium Regime, Physica-A, 260, (1998), pp. 49–72.

    Article  Google Scholar 

  11. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland Publishing Company, Amsterdam, (1972).

    Google Scholar 

  12. C. Grunfeld, On a Class of Kinetic Equations for Reacting Gas Mixtures with Multiple Collisions, C. R. Acad. Sci. Paris, 316, Série I, (1993), pp. 953–958.

    MathSciNet  Google Scholar 

  13. C. Grunfeld and E. Georgescu, On a Class of Kinetic Equations for Reacting Gas Mixtures, Mat. Fiz., Analiz, Geom., 2, (1995), pp. 408–435.

    MathSciNet  Google Scholar 

  14. C. Grunfeld and D. Marinescu, On the Numerical Simulation of Reactive Boltzmann Type Equations, Transp. Theory Stat. Phys., 26, (1997), pp. 287–318.

    Article  MathSciNet  Google Scholar 

  15. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York, (1954).

    MATH  Google Scholar 

  16. I. Kuščer, Dissociation and Recombination in an Inhomogeneous Gas, Physica A, 176, (1991), pp. 542–556.

    Article  MathSciNet  Google Scholar 

  17. G. Lohöfer, Navier-Stokes Boundary Conditions of a Gas Mixture, Phys. Fluids, 29, (1986), pp. 4025–4031.

    Article  MATH  Google Scholar 

  18. G. Ludwig and M. Heil, Boundary Layer Theory with Dissociation and Ionization, In Advances in Applied Mechanics, Volume VI, Academic Press, New York, (1960), pp. 39–118.

    Google Scholar 

  19. E. A. Mason and L. Monchick, Heat Conductivity of Polyatomic and Polar Gases. J. Chem. Phys., 36, (1962), pp. 1622–1639.

    Article  Google Scholar 

  20. F. R. McCourt, J. J. Beenakker, W. E. Köhler, and I. Kuščer, Non Equilibrium Phenomena in Polyatomic Gases, Volume I: Dilute Gases, Clarendon Press, Oxford, (1990).

    Google Scholar 

  21. F. R. McCourt, J. J. Beenakker, W. E. Köhler, and I. Kuščer, Non Equilibrium Phenomena in Polyatomic Gases, Volume II: Cross Sections, Scattering and Rarefied Gases, Clarendon Press, Oxford, (1991).

    Google Scholar 

  22. F. R. McCourt and R. F. Snider, Transport Properties of Gases with Rotational States, J. Chem. Phys., 41, (1964), pp. 3185–3194.

    Article  Google Scholar 

  23. F. R. McCourt and R. F. Snider, Transport Properties of Gases with Rotational States. II. J. Chem. Phys., 43, (1965), pp. 2276–2283.

    Article  MathSciNet  Google Scholar 

  24. J. Millat, V. Vesovic, and W. A. Wakeham, On the Validity of the Simplified Expression for the Thermal Conductivity of Thijsse et al., Physica A, 166, (1988), pp. 153–164.

    Article  Google Scholar 

  25. L. Monchick, K. S. Yun, and E. A. Mason, Formal Kinetic Theory of Transport Phenomena in Polyatomic Gas Mixtures, J. Chem. Phys., 39, (1963), pp. 654–669.

    Article  Google Scholar 

  26. R. D. Present, On the Velocity Distribution in a Chemically Reacting Gas, J. Chem. Phys., 31, (1959), pp. 747–750.

    Article  Google Scholar 

  27. I. Prigogine and M. Mathieu, Sur la Perturbation de la Distribution de Maxwell par des Réactions Chimiques en Phase Gazeuse, Physica., 16, (1950), pp. 51–64.

    Article  MATH  Google Scholar 

  28. I. Prigogine and E. Xhrouet, On the Perturbation of Maxwell Distribution Function by Chemical Reactions in Gases, Physica, 15, (1949), pp. 913–932.

    Article  MATH  Google Scholar 

  29. B. Shizgal and M. Karplus, Nonequilibrium Contributions to the Rate of Reaction. I. Perturbation of the Velocity Distribution Function. J. Chem. Phys., 52, (1970), pp. 4262–4278.

    Article  MathSciNet  Google Scholar 

  30. B. Shizgal and M. Karplus, Nonequilibrium Contributions to the Rate of Reaction. II. Isolated Multicomponent Systems, J. Chem. Phys., 54, (1971), pp. 4345–4356.

    Article  Google Scholar 

  31. B. Shizgal and M. Karplus, Nonequilibrium Contributions to the Rate of Reaction. III. Isothermal Multicomponent Systems, J. Chem. Phys., 54, (1971), pp. 4357–4362.

    Article  Google Scholar 

  32. R. F. Snider, Quantum-Mechanical Modified Boltzmann Equation for Degenerate Internal States, J. Chem. Phys., 32, (1960), pp. 1051–1060.

    Article  MathSciNet  Google Scholar 

  33. K. Takayanagi, On the Theory of Chemically Reacting Gas, Prog. Theor. Phys., VI, (1951), pp. 486–497.

    Article  Google Scholar 

  34. B. J. Thijsse, G. W. ’t Hooft, D. A. Coombe, H. F. P. Knaap, and J. J. M. Beenakker, Some Simplified Expressions for the Thermal Conductivity in an External Field. Physica A, 98, (1979), pp. 307–312.

    Article  Google Scholar 

  35. R. J. Van den Oord and J. Korving, The Thermal Conductivity of Polyatomic Molecules, J. Chem. Phys., 89, (1988), pp. 4333–4338.

    Article  Google Scholar 

  36. J. Van de Ree, On the Definition of the Diffusion Coefficients in Reacting Gases, Physica, 36, (1967), pp. 118–126.

    Article  Google Scholar 

  37. L. Waldmann, Die Boltzmann-Gleichung für Gase mit Rotierenden Molekülen, Zeitschr. Naturforschg., 12a, (1957), pp. 660–662.

    Google Scholar 

  38. L. Waldmann, Transporterscheinungen in Gasen von Mittlerem Druck, Handbuch der Physik, S. Flügge, Ed., 12, Springer-Verlag, Berlin, (1958), pp. 295–514.

    Google Scholar 

  39. L. Waldmann und E. Trübenbacher, Formale Kinetische Theorie von Gasgemischen aus Anregbaren Molekülen. Zeitschr. Naturforschg., 17a, (1962), pp. 363–376.

    Google Scholar 

  40. C. S. Wang Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Gases, University of Michigan Engineering Research Report CM-681, (1951).

    Google Scholar 

  41. C. S. Wang Chang, G. E. Uhlenbeck, and J. De Boer, The Heat Conductivity and Viscosity of Polyatomic Gases, J. De Boer and G. E. Uhlenbeck, Eds., Studies in Statistical Mechanics 2, North Holland Publishing Company, Amsterdam, (1964), pp. 242–268.

    Google Scholar 

  42. F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovangigli, V. (1999). Derivation from the Kinetic Theory. In: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1580-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1580-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7202-1

  • Online ISBN: 978-1-4612-1580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics