Skip to main content

Abstract

In this chapter we present in detail the equations governing multicomponent reactive flows. The derivation of these equations from the kinetic theory of gases can be found in classical textbooks, usually for nonreactive and/or monatomic mixtures [CC70] [FK72] [WT62], and is summarized in Chapter 4 in the general situation of polyatomic reactive gas mixtures [EG94].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Amsden, P. J. O’Rourke, and T. D. Butler, KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory Report, LA-11560-MS, May, (1989).

    Google Scholar 

  2. J. D. Anderson, Jr., Hypersonics and High Temperature Gas Dynamics, McGraw-Hill Book Company, New York, (1989).

    Google Scholar 

  3. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, (1967).

    MATH  Google Scholar 

  4. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, T. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. J. Walker, and J. Warnatz, Evaluated Kinetic Data for Combustion Modelling, J. Phys. Chem. Ref. Data, 21, (1992), pp. 411–734.

    Article  Google Scholar 

  5. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, (1970).

    Google Scholar 

  6. S. M. Candel, Mécanique des Fluides, Dunod, Paris, (1990).

    Google Scholar 

  7. G. V. Candler, J. Olejniczak, and B. Harrold, Detailed Simulation of Nitrogen Dissociation in Stagnation Regions, Phys. Fluids, 9, (1997), pp. 2108–2117.

    Article  Google Scholar 

  8. M. Capitelli, I. Armenise, and C. Gorse, State-to-State Approach in the Kinetics of Air Components Under Re-Entry Conditions, J. Thermophys. Heat Transfer, 11, (1997), pp. 570–578.

    Article  Google Scholar 

  9. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Third Edition, J. Phys. Chem. Ref. Data, 14, Suppl. 1, (1985), pp. 1–1856.

    Article  Google Scholar 

  10. G. M. Come, V. Warth, P. A. Glaude, R. Fournet, F. Battin-Leclerc, and G. Sacchi, Computer—Aided Design of Gas-Phase Oxidation Mechanisms, Application to the Modeling of n-Heptane and Iso-Octane Oxidation, 26th Symposium International on Combustion, The Combustion Institute, Pittsburgh, (1996), pp. 755–762.

    Google Scholar 

  11. C. F. Curtiss, Symmetric Gaseous Diffusion Coefficients, J.Chem. Phys., 49, (1968), pp. 2917–2919.

    Article  Google Scholar 

  12. N. Darabiha, S. Candel, V. Giovangigli, and Smooke M., Extinction of Strained Premixed Propane-Air Flames with Complex Chemistry, Comb. Sci. Tech., 60, (1988), pp. 267–284.

    Article  Google Scholar 

  13. G. Dixon-Lewis, Computer Modeling of Combustion Reactions in Flowing Systems with Transport, in W. C. Gardiner, Ed., Combustion Chemistry. Springer, New York, (1984), pp. 21–125.

    Chapter  Google Scholar 

  14. J. P. Drumond and M. Y. Hussaini, Numerical Simulation of a Supersonic Reacting Mixing Layer, AIAA 19th Fluid Dynamics, Plasma Physics and Laser Conference, Honolulu, Hawaii, Paper AIAA-87-1325, (1987).

    Google Scholar 

  15. J. P. Drumond and H. S. Mukunda, A Numerical Study of Mixing Enhancement in Supersonic Reacting Flow Fields, 3rd International Conference on Numerical Combustion, Sophia-Antipolis (Antibes), A. Dervieux and B. Larouturrou, Eds., Lecture Notes in Physics, Springer-Verlag, 351, (1989), pp. 36–64.

    Google Scholar 

  16. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, New Series “Monographs”, m 24, Springer-Verlag, Berlin, (1994).

    Google Scholar 

  17. A. Ern and V. Giovangigli, Fast and Accurate Multicomponent Property Evaluations, J. Comp. Phys., 120, (1995), pp. 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Ern and V. Giovangigli, The Kinetic Equilibrium Regime, Physica-A, 260, (1998), pp. 49–72.

    Article  Google Scholar 

  19. A. Ern and V. Giovangigli Thermal Diffusion Effects in Hydrogen/Air and Methane/Air Flames, Comb. Theor. Mod., 2, (1998), pp. 349–372.

    Article  MATH  Google Scholar 

  20. A. Ern, V. Giovangigli, and M. Smooke, Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry, J. Comp. Phys., 126, (1996), pp. 21–39.

    Article  MATH  Google Scholar 

  21. M. Feinberg, The Existence and Uniqueness of Steady States for a Class of Chemical Reaction Networks, Arkiv Rat. Mech. Anal, 132, (1995), pp. 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland Publishing Company, Amsterdam, (1972).

    Google Scholar 

  23. M. Frenklach, D. W. Clary, T. Yuan, W. C. Gardiner, and S. E. Stein, Mechanism of Soot Formation in Acetylene-Oxygen Mixtures, Comb. Sci. Tech., 50, (1986), pp. 79–115.

    Article  Google Scholar 

  24. W. C. Gardiner, Jr., Combustion Chemistry, Springer-Verlag, New York, (1984).

    Book  Google Scholar 

  25. V. Giovangigli, Convergent Iterative Methods for Multicomponent Diffusion, IMPACT Comput. Sci. Eng., 3, (1991), pp. 244–276.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. Giovangigli and M. Massot, Asymptotic Stability of Equilibrium States for Multicomponent Reactive Flows, Math. Mod. Meth. Appl. Sci., 8, (1998), pp. 251–297.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Giovangigli and M. Massot, The Local Cauchy Problem for Multicomponent Reactive Flows in Full Vibrational Nonequilibrium, Math. Meth. Appl. Sci., 21, (1998), pp. 1415–1439.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Giovangigli and M. Smooke, Extinction Limits of Strained Premixed Laminar Flames with Complex Chemistry, Comb. Sci. Tech., 53, (1987), pp. 23–49.

    Article  Google Scholar 

  29. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York, (1954).

    MATH  Google Scholar 

  30. K. Kailasanath, E. S. Oran, and J. P. Boris, Numerical Simulation of Flames and Detonations, 3rd International Conference on Numerical Combustion, Sophia-Antipolis (Antibes), A. Dervieux and B. Larouturrou, Eds., Lecture Notes in Physics, Springer-Verlag, 351, (1989), pp. 82–97.

    Google Scholar 

  31. R. J. Kee, G. H. Evans, and M. E. Coltrin, Application of Supercomputers to Model Fluid Transport and Chemical Kinetics in Chemical Vapor Deposition Reactors, Supercomputer Research in Chemistry and Chemical Engineering, K. F. Jensen and D. G. Truhlar, Eds., ACS Symposium Series, 353, (1987), pp. 334–352.

    Google Scholar 

  32. R. Kubo, Statistical Mechanics, North Holland Publishing Company, Amsterdam, (1965).

    MATH  Google Scholar 

  33. B. Laboudigue, V. Giovangigli, and S. Candel, Numerical Solution of a Free-Boundary Problem in Hypersonic Flow Theory: Nonequilibrium Viscous Shock Layers, J. Comp. Phys., 102, (1992), pp. 297–309.

    Article  Google Scholar 

  34. M. Massot, Modélisation Mathématique et Numérique de la Combustion des mélanges Gazeux, Thèse, École Polytechnique, (1996).

    Google Scholar 

  35. T. Poinsot, S. Candel, and A. Trouvé, Application of Direct Numerical Simulation to Premized Turbulent Combustion, Prog. Ener. Comb. Sci., 21, (1996), pp. 531–576.

    Article  Google Scholar 

  36. K. F. Roenigk and K. F. Jensen, Low Pressure CVD of Silicon Nitride, J. Electrochem. Soc., 134, (1987), pp. 1777–1785.

    Article  Google Scholar 

  37. D. E. Rosner, Transport Processes in Chemically Reacting Flow Systems, Butterworths, Boston, (1986).

    Google Scholar 

  38. L. Sainsaulieu, Equilibrium Velocity Distribution Functions for a Kinetic Model of Two-Phase Fluid Flow, Math. Mod. Meth. Appl. Sci., 5, (1995), pp. 191–211.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. H. Scinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., New York, (1998).

    Google Scholar 

  40. M. D. Smooke, Solution of Burner Stabilized Premixed Laminar Flames by Boundary Value Methods, J. Comp. Phys., 48, (1982), pp. 72–105.

    Article  MATH  Google Scholar 

  41. D. R. Stull and H. Prophet, JANAF Thermochemical Tables, Second ed., Washington, NBS NSRDS-NBS37 (1971).

    Google Scholar 

  42. J. Van de Ree, On the Definition of the Diffusion Coefficients in Reacting Gases, Physica, 36, (1967), pp. 118–126.

    Article  Google Scholar 

  43. L. Waldmann, Transporterscheinungen in Gasen von Mittlerem Druck, Handbuch der Physik, S. Flügge, Ed., 12, Springer-Verlag, Berlin, (1958), pp. 295–514.

    Google Scholar 

  44. L. Waldmann und E. Trübenbacher, Formale Kinetische Theorie von Gasgemischen aus Anregbaren Molekülen, Zeitschr. Naturforschg., 17a, (1962), pp. 363–376.

    Google Scholar 

  45. J. Warnatz, M. D. Allendorf, R. J. Kee, and M. E. Coltrin, A Model of Elementary Chemistry and Fluid Mechanics in the Combustion of Hydrogen on Platinum Surfaces, Comb. Flame, 96, (1994), pp. 393–406.

    Article  Google Scholar 

  46. F. A. Williams, Spray Combustion and Atomization, Phys. Fluids, 1, (1958), pp. 541–545.

    Article  MATH  Google Scholar 

  47. F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, (1985).

    Google Scholar 

  48. Y. B. Zeldovitch, G. I. Barenblat, V. B. Librovitch, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, (1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovangigli, V. (1999). Fundamental Equations. In: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1580-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1580-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7202-1

  • Online ISBN: 978-1-4612-1580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics