Skip to main content

Numerical Simulations

  • Chapter
Multicomponent Flow Modeling

Abstract

Numerical simulation of compressible flows is a very difficult task that has been the subject of numerous textbooks and requires a solid background in fluid mechanics and numerical analysis [PT83] [GiRa86] [Hug87] [OB87] [Joh90] [FP96] [GoRa96]. The nature of compressible flows may be very complex, with features such as shock fronts, boundary layers, turbulence, acoustic waves, or instabilities. Taking into account chemical reactions dramatically increases the difficulties, especially when detailed chemical and transport models are considered. Interactions between chemistry and fluid mechanics are especially complex in reentry problems, combustion phenomena, or chemical vapor deposition reactors. As a consequence, it would be unthinkable to try to address these issues and discuss the development of reactive flow solvers in a single chapter or even in a single book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Baritaud, T. Poinsot, and Markus Baum, Direct Numerical Simulation for Turbulent Reactive Flows, Editions Technip, Paris, (1996).

    Google Scholar 

  2. R. Becker, M. Brack, and R. Rannacher, Numerical Simulation of Laminar Flames at Low Mach Number by Adaptive Finite Elements, Comb. Theory Mod., (1999), (in press).

    Google Scholar 

  3. B. A. Beth and M. D. Smooke, Local Rectangular Refinment with Application to Combustion Problems, Comb. Theory Mod., 2, (1998), pp. 221–258.

    Article  MATH  Google Scholar 

  4. P. Clavin and F. Williams, Effects of Molecular Diffusion and of Thermal Expansion on the Structure and Dynamics of Premixed Flames in Turbulent Flows of Large Scale and Low Intensity, J. Fluid Mech., 116, (1982), pp. 251–282.

    Article  MATH  Google Scholar 

  5. G. Dixon-Lewis, Computer Modeling of Combustion Reactions in Flowing Systems with Transport, in W. C. Gardiner, Ed., Combustion Chemistry. Springer-Verlag, New York, (1984), pp. 21–125.

    Chapter  Google Scholar 

  6. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, New Series “Monographs”, m 24, Springer-Verlag, Berlin, (1994).

    Google Scholar 

  7. A. Ern and V. Giovangigli, EGlib Server and User’s Manual, http://www.cmap.polytechnique.fr

  8. Ern A. and V. Giovangigli, Thermal Diffusion Effects in Hydrogen-Air and Methane-Air Flames, Comb. Theory Mod., 2, (1998), pp. 349–372.

    Article  MATH  Google Scholar 

  9. A. Ern, V. Giovangigli, and M. Smooke, Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry, J. Comp. Phys., 126, (1996), pp. 21–39.

    Article  MATH  Google Scholar 

  10. A. Ern, V. Giovangigli, D. Keyes, and M. Smooke, Towards Polyalgorithmic Linear System Solvers for Nonlinear Elliptic Problems, SIAM J. Sci. Stat. Comp., 15, (1994), pp. 681–703.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ern and M. Smooke, The Vorticity-Velocity Formulation, J. Comp. Phys., 105, (1993), pp. 58–68.

    Article  MATH  Google Scholar 

  12. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, (1996).

    Book  MATH  Google Scholar 

  13. V. Giovangigli and N. Darabiha, Vector Computers and Complex Chemistry Combustion, in C. Brauner and C. Schmidt-Laine, Eds., Proc. Conference Mathematical Modeling in Combustion and Related Topics, NATO Adv. Sci. Inst. Ser. E, Martinus Nijhoff Publishers, Dordrecht, 140, (1988), pp. 491–503.

    Chapter  Google Scholar 

  14. V. Girault and P. A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Springer-Verlag, Heidelberg, (1986).

    Book  MATH  Google Scholar 

  15. E. Godlewski and P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, (1996).

    MATH  Google Scholar 

  16. G. Hauke and T. J. R. Hughes, A Comparative Study of Different Sets of Variables for Solving Compressible and Incompressible Flows, Comp. Meth. Appl. Mech. Eng., 153, (1998), pp. 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. J. R. Hughes, Recent Progress in the Development and Understanding of S UP G methods with Special Reference to the Compressible Euler and Navier-Stokes Equations, in R. H. Gallagher, R. Glowinsky, P. M. Gresho, J. T. Oden, and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley & Sons, Ltd, Chichester, (1987), pp. 273–287.

    Google Scholar 

  18. C. Johnson, Adaptive Finite Element Methods for Diffusion and Convection Problems, Comp. Meth. Appl. Mech. Eng., 82, (1990), pp. 301–322.

    Article  MATH  Google Scholar 

  19. R. J. Kee, J. A. Miller, and T. H. Jefferson, Chemkin: A General-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package, SANDIA National Laboratories Report, SAND80-8003, (1980).

    Google Scholar 

  20. R. J. Kee, F. M. Rupley, and J. A. Miller, The Chemkin Thermodynamic Data Base, SANDIA National Laboratories Report, SAND87-8215, (1987).

    Google Scholar 

  21. R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics, SANDIA National Laboratories Report, SAND89-8009B, (1989).

    Google Scholar 

  22. D. A. Knoll, P. R. McHugh, and D. E. Keyes, Newton-Krylov Methods for Low-Mach-Number Compressible Combustion, AIAA J., 34, (1996), pp. 961–967.

    Article  MATH  Google Scholar 

  23. B. Lucquin and O. Pironneau, Introduction au Calcul Scientifique, Masson, Paris, (1996).

    MATH  Google Scholar 

  24. E. Oran and J. P. Boris, Numerical Simulation of Reactive Flows, Elsevier, New York, (1987).

    Google Scholar 

  25. R. Peyret and T. Taylor, Computational Methods for Fluid Flow, Springer-Verlag, New York, (1983).

    Book  MATH  Google Scholar 

  26. Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Lineae Systems, SIAM J. Sci. Stat. Comp., 7, (1986), pp. 856–869.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. D. Smooke, Solution of Burner Stabilized Premixed Laminar Flames by Boundary Value Methods, J. Comp. Phys., 48, (1982), pp. 72–105.

    Article  MATH  Google Scholar 

  28. J. Warnatz, U. Maas, and R. W. Dibble, Combustion, Springer-Verlag, Berlin, (1996).

    Book  Google Scholar 

  29. F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovangigli, V. (1999). Numerical Simulations. In: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1580-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1580-6_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7202-1

  • Online ISBN: 978-1-4612-1580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics