Skip to main content

Abstract

Traveling waves in inert or reactive flows can be classified into deflagration waves and detonation waves [Wil85]. The structure of reactive exothermic detonation waves will not be addressed in this book and we refer the reader to [Wil85]. On the other hand, in the context of combustion phenomena, weak deflagration waves typically correspond to plane flames and have been the object of intensive mathematical, physical, chemical, and asymptotic investigations over the last decade [Wil85].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. P. Aldushin, Ya. B. Zeldovitch, and S. I. Khudyaev, Numerical Investigation of the Flame Propagation in a Mixture Reacting at the Initial Temperature, Fiz. Goreniya Vzryva (Comb. Explos. Shock Waves), 15, (1979), pp. 20–27.

    Google Scholar 

  2. J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York, (1989).

    MATH  Google Scholar 

  3. A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, John Wiley & Sons, Inc., New York, (1974).

    MATH  Google Scholar 

  4. H. Berestycki and B. Larrouturou, Sur les Modèles de Flammes en Chimie Complexe, C. R. Acad. Sci. Paris, Série I, 317, (1993), pp. 173–176.

    MathSciNet  MATH  Google Scholar 

  5. A. Bonnet, Travelling Wave for Planar Flames with Complex Chemistry Reaction Network, Comm. Pure Appl. Math., XLV, (1992), pp. 1271–1302.

    Article  MathSciNet  Google Scholar 

  6. A. Bonnet, Contribution à l’Étude des Problèmes Elliptiques et à la Modélisation Mathématique de la Combustion, Mémoire d’Habilitation à Diriger des Recherches, Université Paris 6, (1994).

    Google Scholar 

  7. N. Bourbaki, Fonctions d’une Variable Réelle, Éléments de Mathématiques, Diffusion C. C. L. S., (1976).

    Google Scholar 

  8. J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames, Cambridge University Press, Cambridge, (1982).

    Book  MATH  Google Scholar 

  9. P. Clavin, Dynamic Behavior of Premixed Flame Fronts in Laminar and Turbulent Flows, Prog. Ener. Comb. Sci., 11, (1985), pp. 1–59.

    Article  Google Scholar 

  10. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, (1988).

    Google Scholar 

  11. V. Giovangigli, An Existence Theorem for a Free-Boundary Problem of Hypersonic Flow Theory, SIAM J. Math. Anal., 24, (1993), pp. 571–582.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Giovangigli, Plane Flames with Multicomponent Transport and Complex Chemistry, Internal Report, 366, Centre de Mathématiques Appliquées de l’Ecole Polytechnique, (1997).

    Google Scholar 

  13. V. Giovangigli, Flames Planes avec Transport Multi-espece et Chimie Complexe, C. R. Acad. Sci. Paris, 326, Série I, (1998), pp. 775–780.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Giovangigli, Plane Flames with Multicomponent Transport and Complex Chemistry, Math. Mod. Meth. Appl. Sci., 9, (1999), pp. 337–378.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Giovangigli and M. Smooke, Application of Continuation Techniques to Plane Premixed Laminar Flames, Comb. Sci. Tech., 87, (1992), pp. 241–256.

    Article  Google Scholar 

  16. S. Heinze, Travelling Waves in Combustion Processes with Complex Chemical Networks, Trans. Amer. Soc., 304, (1987), pp. 405–416.

    MathSciNet  MATH  Google Scholar 

  17. J. O. Hirschfelder, C. F. Curtiss, and D. E. Campbell, The Theory of Flames and Detonations, Fourth International Symposium on Combustion, (1953), pp. 190–210.

    Google Scholar 

  18. J. Leray and J. Schauder, Topologie et Equations Fonctionnelles, Ann. Sci. École Norm. Sup., 51, (1934), pp. 45–78.

    MathSciNet  Google Scholar 

  19. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sci., 53, Springer-Verlag, New-York, (1984).

    Google Scholar 

  20. J. Quinard, G. Searby, and L. Boyer, Cellular Structures on Premized Flames in a Uniform Laminar Flow, Lect. Notes Phys., 210, Springer-Verlag, Berlin, (1984), pp. 331–341.

    Google Scholar 

  21. M. Sermange, Mathematical and Numerical Aspects of One-Dimensional Laminar Flame Simulation, Appl. Math. Opt., 14, (1986), pp. 131–153.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. M. Roquejoffre, Étude Mathématique d’un Modèle de Flamme Plane, C. R. Acad. Sci. Paris, 311, Série I, (1990), pp. 593–596.

    MathSciNet  MATH  Google Scholar 

  23. J. M. Roquejoffre and J. P. Vila, Stability of ZND Detonation Waves in the Majda Combustion Model, Preprint, (1998.

    Google Scholar 

  24. J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, (1969).

    MATH  Google Scholar 

  25. A. Vol’pert and S Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics, Mechanics: Analysis 8, Martinus Nijhoff Publishers, Dordrecht, (1985).

    Google Scholar 

  26. V. A. Volpert and V. A. Volpert, Travelling Wave Solutions of Monotone Parabolic Systems, Preprint, Inst. Chem. Phys., Chernogolovka, (in Russian), (1990), (Also, Preprint 146, Université de Lyon 1, 1993).

    Google Scholar 

  27. A. I. Volpert, V. A. Volpert, and V. A. Volpert, Travelling Wave Solutions of Parabolic Systems, Trans. Math. Mono., AMS, 140, (1994).

    Google Scholar 

  28. F. A. Williams, Combustion Theory, Second ed., The Benjamin/Cummings Publishing Company, Inc., Menlo Park, (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giovangigli, V. (1999). Anchored Waves. In: Multicomponent Flow Modeling. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1580-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1580-6_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7202-1

  • Online ISBN: 978-1-4612-1580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics