Skip to main content

On Poisson Approximation for Continuous Multiple Scan Statistics in Two Dimensions

  • Chapter
Scan Statistics and Applications

Part of the book series: Statistics for Industry and Technology ((SIT))

Abstract

In this chapter, Poisson approximation for multiple scan statistics in the continuous case is investigated. The setting is mainly two dimensional, but higher dimensions are also discussed. The scanning set can be any convex set, and in order to motivate the choice of parameters in the approximations, some geometrical arguments are given. The errors involved in the approximations are studied both by simulations and by giving bounds on the total variation distances by means of the Stein—Chen method. Furthermore, Poisson process approximations of some point processes, which occur in this context, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D. (1989).Probability Approximations via the Poisson Clumping HeuristicNew York: Springer-Verlag.

    MATH  Google Scholar 

  2. Alm, S. E. (1983). On the distribution of the scan statistic of a Poisson process, InProbability and Mathematical Statistics: Essays in honour of Carl-Gustav Esseenpp. 1–10, Department of Mathematics, Uppsala University, Sweden.

    Google Scholar 

  3. Alm, S. E. (1997). On the distribution of scan statistics of a two-dimen-sional Poisson process, Advances in Applied Probability, 29, 1–18

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbour, A. D. and Eagleson, G. K. (1984). Poisson convergence for dissociated statistics.Journal of the Royal Statististical Society Series B 46397–402.

    MathSciNet  MATH  Google Scholar 

  5. Barbour, A. D., Holst, L. and Janson, S. (1992).Poisson ApproximationOxford, England: Oxford University Press.

    Google Scholar 

  6. Berwald, W. and Varga, O. (1937). Integralgeometrie 24, Über die Schiebungen im RaumMathematisch Zeitschrift 42710–736.

    Article  MathSciNet  Google Scholar 

  7. Blaschke, W. (1937). Integralgeometrie 21, Über SchiebungenMathematisch Zeitschrift 42399–410.

    Article  MathSciNet  Google Scholar 

  8. Bonnesen, T. and Fenchel, W. (1948).Theorie der Konvexen KörperNew York: Chelsea.

    Google Scholar 

  9. Eggleston H. G. (1958).ConvexityCambridge, England: Cambridge University Press.

    Book  Google Scholar 

  10. Eggleton, P. and Kermack, W. O. (1944). A problem in the random distribution of particlesProceedings of the Royal Society of Edinburgh Section A 62103–115.

    MathSciNet  MATH  Google Scholar 

  11. Gates, D. J. and Westcott, M. (1985). Accurate and asymptotic results for distributions of scan statisticsJournal of Applied Probability 22531–542.

    Article  MathSciNet  MATH  Google Scholar 

  12. Glaz, J. (1989). Approximations and bounds for the distribution of the scan statisticJournal of the American Statistical Association 84560–566.

    Article  MathSciNet  MATH  Google Scholar 

  13. Glaz, J. and Naus J. (1983). Multiple clusters on the lineCommunications in Statistics Theory and Methods 121961–1986.

    Article  MathSciNet  MATH  Google Scholar 

  14. Glaz, J., Naus J., Roos, M. and Wallenstein, S. (1994). Poisson approximations for the distribution and moments of ordered m-spacingsJournal of Applied Probability 31A271–281.

    Article  MathSciNet  Google Scholar 

  15. Janson, S. (1984). Bounds on the distributions of extremal values of a scanning process.Stochastic Processes and Their Applications 18313–328.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kulldorff, M. (1997). A spatial scan statistic.Communications in Statistics-Theory and Methods 261481–1496.

    Article  MathSciNet  MATH  Google Scholar 

  17. Kulldorff, M. and Nagarwalla, N. (1995). Spatial disease clusters: detection and inferenceStatistics in Medicine 14799–810.

    Article  Google Scholar 

  18. Loader, C. R. (1991). Large-deviation approximations to the distribution of scan statisticsAdvances in Applied Probability 23751–771.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mack, C. (1948). An exact formula forQk(n)the probable number ofk-aggregates in a random distribution ofnpointsPhilosophical Magazine 39,778–790.

    MathSciNet  MATH  Google Scholar 

  20. Mack, C. (1949). The expected number of aggregates in a random distribution ofnpointsProceedings of the Cambridge Philosophical Society46, 285–292.

    Article  MathSciNet  Google Scholar 

  21. Mánsson, M. (1996). On clustering of random points in the plane and in spaceThesisISBN 91–7197–290–0/ISSN 0346–718X, Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  22. Mánsson, M. (1997). Poisson approximation in connection with clustering of random pointsPreprintNO 1997–32/ISSN 0347–2809, Department of Mathematics, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  23. Miles, R. E. (1974). The fundamental formula of Blaschke in integral geometry and geometrical probability, and its iteration, for domains with fixed orientationsAustralian Journal of Statistics 16111–118.

    Article  MathSciNet  MATH  Google Scholar 

  24. Naus, J. I. (1982). Approximations for distributions of scan statisticsJournal of the American Statistical Association 77177–183.

    Article  MathSciNet  MATH  Google Scholar 

  25. Roos, M. (1993). Compound Poisson approximations for the numbers of extreme spacingsAdvances in Applied Probability 25847–874.

    Article  MathSciNet  MATH  Google Scholar 

  26. Silberstein, L. (1945). The probable number of aggregates in random distributions of pointsPhilosophical Magazine 36319–336.

    MathSciNet  Google Scholar 

  27. Silverman, B. and Brown, T. (1978). Short distances, flat triangles and Poisson limitsJournal of Applied Probability 15815–825.

    Article  MathSciNet  MATH  Google Scholar 

  28. Silverman, B. and Brown, T. (1979). Rates of Poisson convergence for U-statisticsJournal of Applied Probability 16428–432.

    Article  MathSciNet  MATH  Google Scholar 

  29. Weil, W. (1990). Iterations of translative formulae and non-isotropic Poisson processes of particlesMathematisch Zeitschrift 205531–549.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Månsson, M. (1999). On Poisson Approximation for Continuous Multiple Scan Statistics in Two Dimensions. In: Glaz, J., Balakrishnan, N. (eds) Scan Statistics and Applications. Statistics for Industry and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1578-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1578-3_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7201-4

  • Online ISBN: 978-1-4612-1578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics