Viscous Fluid

  • Sergey P. Kiselev
  • Evgenii V. Vorozhtsov
  • Vasily M. Fomin
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


This chapter is devoted to the viscous fluid flows, which are described by the Navier—Stokes equations. We derive the Navier—Stokes equations in the Cartesian, cylindrical, and spherical coordinate systems and consider their exact solutions at small Reynolds numbers. We present the Prandtl’s theory of boundary layer, which is valid at large Reynolds numbers. This theory enables one to calculate the drag force acting on a plate in the viscous fluid flow. We also outline the theory for the transition from laminar viscous fluid flow to turbulent flow and discuss a number of the semiempirical theories of turbulence.


Boundary Layer Fluid Flow Viscous Fluid Critical Reynolds Number Spherical Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kochin, N.E., Kibel, I.A., and Rose, N.V.Theoretical Hydromechanics(in Russian), Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.Google Scholar
  2. 2.
    Birkhoff, G.Hydrodynamics. A Study in Logic Fact and SimilitudeSecond Edition, Princeton University Press, Princeton, NJ, 1960.zbMATHGoogle Scholar
  3. 3.
    Prandtl, L.The Mechanics of Viscous Fluids. Vol. III Aerodynamic Theory Springer, Berlin, 1935.Google Scholar
  4. 4.
    Prandtl, L. and Tietjens, O.G.Applied Hydro-and Aeromechanics(Translated from the German edition, Springer, Berlin, 1931), McGraw-Hill, New York, 1934.Google Scholar
  5. 5.
    Schlichting, H.Boundary Layer TheorySeventh Edition, McGraw-Hill, New York, 1979.zbMATHGoogle Scholar
  6. 6.
    Loitsyanskii, L.G.Mechanics of Liquids and GasesPergamon Press, Oxford, 1966.Google Scholar
  7. 7.
    Mises, R., Bemerkungen zur HydrodynamikZeitschrift für angewandte Mathematik und Mechanik7:425, 1927.zbMATHGoogle Scholar
  8. 8.
    Strampp, W., Ganzha, V., and Vorozhtsov, E.Höhere Mathematik mit Mathematica. Band 3: Differentialgleichungen und NumerikVerlag Vieweg, Braunschweig/Wiesbaden, 1997.zbMATHCrossRefGoogle Scholar
  9. 9.
    Lin, C.C.The Theory of Hydrodynamic StabilityUniversity Press, Cambridge, 1955.zbMATHGoogle Scholar
  10. 10.
    Landau, L.D. and Lifschitz, E.M.Hydrodynamics(in Russian), Nauka, Moscow, 1986.Google Scholar
  11. 11.
    Swinney, H.L. and Gollub, J.P. (Editors)Hydrodynamic Instabilities and the Transition to Turbulence Vol. 45, Springer-Verlag, Berlin, 1981.zbMATHGoogle Scholar
  12. 12.
    Ruelle, D. and Takens, F., On the nature of turbulenceCommunications on Mathematical Physics20:167, 1971; 23:343, 1971.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Feigenbaum, M.J., Universality in the behavior of nonlinear systemsUspekhi Fizicheskikh Nauk(in Russian), 141:343, 1983 [translated from the Los Alamos Science (Summer 1980)], p. 4.Google Scholar
  14. 14.
    Lorenz, E.N.,Deterministic nonperiodic flowJ. Atmos. Sci.20:130, 1963.CrossRefGoogle Scholar
  15. 15.
    Libby, P.A. and Williams, F. (Editors)Turbulent Reacting FlowsTopics in Applied Physics, vol. 44, Springer-Verlag, Berlin, 1980.zbMATHGoogle Scholar
  16. 16.
    Bradshaw, P. (Editor)TurbulenceSecond Edition, Topics in Applied Physics, Vol. 12, Springer-Verlag, Berlin, 1978.Google Scholar
  17. 17.
    Monin, A.S. and Yaglom,A.M.Statistical Fluid MechanicsVols. I and II, MIT Press, Cambridge, MA, 1971.Google Scholar
  18. 18.
    Hinze, J.O.Turbulence an Introduction to Its Mechanism and Theory,McGraw-Hill, New York, 1959.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sergey P. Kiselev
    • 1
  • Evgenii V. Vorozhtsov
    • 1
  • Vasily M. Fomin
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations