Advertisement

Ideal Fluid

  • Sergey P. Kiselev
  • Evgenii V. Vorozhtsov
  • Vasily M. Fomin
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter deals with incompressible ideal fluid flows. While choosing the material, the authors aimed at presenting those reults that have now become the classical results and are widely used in the current research work of the aerohydrodynamicists1-9. In particular, the Bernoulli and Lagrange integrals are derived in Section 4.1. They enable one to find the pressure distribution in the fluid from a given velocity field.

Keywords

Stream Function Ideal Fluid Velocity Potential Complex Potential Vortex Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kochin, N.E., Kibel, I.A., and Rose, N.V.Theoretical Hydromechanics(in Russian), Vol. I, 6th Edition; Vol. II, 4th Edition, Fizmatgiz, Moscow, 1963.Google Scholar
  2. 2.
    Milne-Thompson, L.M.Theoretical Hydrodynamics5th Edition, MacMillan, New York, 1967.Google Scholar
  3. 3.
    Gromeka, I.S.Some Cases of Incompressible Fluid Flow(in Russian), Kazan, 1881 (Reprinted in: Gromeka, I.S.Collected Works(in Russian), USSR Academy of Sciences, Moscow, 1952, p. 76.Google Scholar
  4. 4.
    Lamb, H.Hydrodynamics6th Edition, Cambridge University Press, London, 1932; Dover Publications, New York, 1945.zbMATHGoogle Scholar
  5. 5.
    Germain, P.Cours de Mécanique des Milieux Continus. Tome I. Théorie Générale, Masson et Cie, Éditeurs, Paris, 1973.Google Scholar
  6. 6.
    Sedov, L.I.Continuum MechanicsVols. I and II (in Russian), Fifth Edition, Nauka, Moscow, 1994.Google Scholar
  7. 7.
    Kirchhoff, G.R.Mechanics(in Russian; translated from German), USSR Academy of Sciences, Moscow, 1962.Google Scholar
  8. 8.
    Sedov, L.I.Planar Problems of Hydrodynamics and Aerody- namics(in Russian), Second Edition, Nauka, Moscow, 1966.Google Scholar
  9. 9.
    Vallander, S.V.Lectures in Hydroaeromechanics(in Russian), Leningrad State University, Leningrad, 1978.Google Scholar
  10. 10.
    Warsi, Z.U.A.Fluid Dynamics. Theoretical and Computational ApproachesCRC Press, Boca Raton, 1993.zbMATHGoogle Scholar
  11. 11.
    Batchelor, G.K., AnIntroduction to Fluid DynamicsCambridge University Press, London, 1967.zbMATHGoogle Scholar
  12. 12.
    Fletcher, C.A.J.Computational Techniques for Fluid DynamicsVols. I, II, 3rd Edition, Springer-Verlag, Berlin, 1996.Google Scholar
  13. 13.
    Strampp, W., Ganzha, V., and Vorozhtsov, E.Höhere Mathematik mit Mathematica. Band 3: Differentialgleichungen und NumerikVerlag Vieweg, Braunschweig/Wiesbaden, 1997.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sergey P. Kiselev
    • 1
  • Evgenii V. Vorozhtsov
    • 1
  • Vasily M. Fomin
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations