Advertisement

Fundamental Principles and Laws of Continuum Mechanics

  • Sergey P. Kiselev
  • Evgenii V. Vorozhtsov
  • Vasily M. Fomin
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

We derive in this chapter the governing differential equations of continuum mechanics with the aid of the above definitions and the conservation laws for the mass, momentum, energy, and momentum moment written for finite volumes of a continuum. The differential equations of continuum mechanics (equations of continuity, momentum, and energy) represent the partial differential equations written in the Lagrangian and Eulerian coordinates. They are applicable for the description of any continua. The specification of a continuum is achieved by specifying the equation of state. We discuss in the present chapter the general principles of the construction of the equations of state and their form in the simplest case of an ideal and viscous, heat-conducting gas.

Keywords

Reference Frame Variational Principle Motion Equation Individual Volume Specific Internal Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eringen, A.C.Mechanics of ContinuaJohn Wiley and Sons, Inc., New York, 1967.zbMATHGoogle Scholar
  2. 2.
    Mindlin, R.D., Micro-structure in linear plasticityArchive of Rational Mechanics and Analysis1:51, 1964.MathSciNetGoogle Scholar
  3. 3.
    Palmov, V.A., Basic equations of the nonsymmetric elasticityPrikladnaya Matematika i Mekhanika(in Russian), 28(3):401,1964.MathSciNetGoogle Scholar
  4. 4.
    Cosserat, E. and Cosserat, F.Théorie des corps déformablesHermann, Paris, 1909.Google Scholar
  5. 5.
    Uhlenbeck, G.E. and Ford, G.W.Lectures in Statistical MechanicsAmerican Mathematical Society, Providence, Rhode Island, 1963.Google Scholar
  6. 6.
    Hirshfelder, J.O., Curtiss, C.F., and Bird, R.B.The Molecular Theory of Gases and LiquidsJohn Wiley and Sons, Inc., New York, 1954.Google Scholar
  7. 7.
    Sedov, L.I.Continuum MechanicsVol. 1 (in Russian), Fifth Edition, Nauka, Moscow, 1994.zbMATHGoogle Scholar
  8. 8.
    Nicolis, G. and Prigogine, I.Exploring Complexity: An IntroductionW.H. Freeman and Company, New York, 1989.Google Scholar
  9. 9.
    Nicolis, J.S.Dynamics of Hierarchical Systems. An Evolutionary ApproachSpringer-Verlag, Berlin, 1986.zbMATHCrossRefGoogle Scholar
  10. 10.
    Ilyushin, A.A.Continuum Mechanics (in Russian), Moscow State University, Moscow, 1990.Google Scholar
  11. 11.
    Landau, L.D. and Lifschitz, E.M.Statistical Physics Pt. I (in Russian), Nauka, Moscow, 1976.Google Scholar
  12. 12.
    Goldstein, H.Classical MechanicsAddison-Wesley, Cambridge, Massachusetts, 1950.Google Scholar
  13. 13.
    Lanszos, C.The Variational Principles of Mechanics, Univ. Toronto Press, 1949.Google Scholar
  14. 14.
    Leech, J.W.Classical MechanicsJohn Wiley and Sons, Inc., New York, 1958.zbMATHGoogle Scholar
  15. 15.
    Berdichevskii, V.L.Variational Principles of Continuum Mechanics(in Russian), Nauka, Moscow, 1983.Google Scholar
  16. 16.
    Landau, L.D. and Lifschitz, E.M.Field Theory (in Russian), Vol. 2, Nauka, Moscow, 1988.Google Scholar
  17. 17.
    Logunov, A.A.Lectures on the Theories of Relativity and Gravitation (Up-to-Date Analysis of the Problem) (in Russian), Vol. 2, Nauka, Moscow, 1988.Google Scholar
  18. 18.
    Eshelby, J.D.,Continual Theory of DefectsSolid State Phys.Vol. 3, p. 79, 1956.CrossRefGoogle Scholar
  19. 19.
    Warsi, Z.U.A.Fluid Dynamics. Theoretical and Computational ApproachesCRC Press, Boca Raton, 1993.zbMATHGoogle Scholar
  20. 20.
    Landau, L.D. and Lifschitz, E.M.Elasticity Theory(in Russian), Nauka, Moscow, 1987.Google Scholar
  21. 21.
    Ovsyannikov, L.V.The Group Analysis of Differential Equations(in Russian), Nauka, Moscow, 1978.Google Scholar
  22. 22.
    Richtmyer, R.D.Principles of Advanced Mathematical PhysicsVol. 2, Springer-Verlag, New York, 1978.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sergey P. Kiselev
    • 1
  • Evgenii V. Vorozhtsov
    • 1
  • Vasily M. Fomin
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations