Discrete Tomography pp 417-434 | Cite as

# Tomography on the 3D-Torus and Crystals

Chapter

## Abstract

We exhibit a fast Radon transform on an ambient space over a finite field which furnishes spatial limited-angle models for electron and X-ray tomography. These algorithms have applications in crystallography.

## Keywords

Tilt Angle Binary Tomography Finite Field Ambient Space Binary Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- [1]G. T. Herman, “Two direct methods for reconstructing pictures from their projections: A comparative study,”
*Computer Graphics and Image Processing***1**, 123–144 (1972).CrossRefGoogle Scholar - [2]R. A. Gordon, “A tutorial on ART (Algebraic Reconstruction Techniques),”
*IEEE Trans. Nuclear Science***21**78–93 (1974).CrossRefGoogle Scholar - [3]R. A. Brooks and G. Di Chiro, “Theory of image reconstruction in computed tomography,”
*Radiology***117**561–572 (1975).CrossRefPubMedGoogle Scholar - [4]R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,”
*Physics in Medicine and Biology***21**689–732 (1976).CrossRefPubMedGoogle Scholar - [5]G. T. Herman and R. M. Lewitt, “Overview of image reconstruction from projections,” In G. T. Herman,
*Image Reconstruction from Projections: Implementation and Applications*(Springer-Verlag, Berlin), pp. 1–7, 1979.CrossRefGoogle Scholar - [6]D. E. Kuhl and R. Q. Edwards, “Reorganizing data from transverse section scans of the brain using digital processing,”
*Radiology***91**975–983 (1968).CrossRefPubMedGoogle Scholar - [7]M. Hall Jr.,
*Combinatorial Theory*, 2 Edition, (John Wiley and Sons, New York), 1986.Google Scholar - [8]S. K. Chang and C. K. Chow, “The reconstruction of a three-dimensional object from two orthogonal projections and its applications to cardiac cineangiography,”
*IEEE Trans. Comput.***22**18–28 (1973).CrossRefGoogle Scholar - [9]A. Klug and R. A. Crowther, “Three-dimensional image reconstruction from the viewpoint of information theory,”
*Nature***238**435–440 (1972).CrossRefGoogle Scholar - [10]E. D. Bolker, “The finite Radon transform,” In R. L. Bryant, V. Guillemin, S. Helgason, and R. O. Wells Jr.,
*Integral Geometry*, (American Mathematical Society, Providence, RI), pp. 27–50, 1987.CrossRefGoogle Scholar - [11]E. L. Grinberg, “The admissibility theorem for the hyperplane transform over a finite field,”
*J. Combinatorial Th., Series A***53**316–320 (1990).CrossRefGoogle Scholar - [12]J. P. S. Kung, “Reconstructing finite Radon transforms,”
*Nuclear Physics B (Proc. Suppl.)***5A**44–49 (1988).CrossRefGoogle Scholar - [13]G. T. Herman, “Reconstruction of binary patterns from a few projections,” In A. Günther, B. Levrat and H. Lipps,
*International Computing Symposium 1973*, (North-Holland Publ. Co., Amsterdam), pp. 371–378,1974.Google Scholar - [14]C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, and A. Ourmazd, “An approach to quantitative high-resolution transmission electron microscopy of crystalline materials,”
*Ultramicroscopy***58**131–155 (1995).CrossRefGoogle Scholar - [15]P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Ourmazd, “Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy,”
*Phys. Rev. Let.***71**4150–4153 (1993).CrossRefGoogle Scholar - [16]P. C. Fishburn, J. C. Lagarias, J. A. Reeds, and L. A. Shepp, “Sets uniquely determined by projections on axes. II. Discrete case,”
*Disc. Math.***91**149–159, 1991.CrossRefGoogle Scholar - [17]R. Aharoni, G. T. Herman, and A. Kuba, “Binary vectors partially determined by linear equation systems,”
*Disc. Math.***171**1–16, 1997.CrossRefGoogle Scholar - [18]A. Kuba, “Reconstruction of unique binary matrices with prescribed elements,”
*Acta Cybern.*57–70 (1995).Google Scholar**12** - [19]P. Fishburn, P. Schwander, L. Shepp, and R. J. Vanderbei, “A discrete Radon transform and its approximate inversion via linear programming,”
*Disc. Appl. Math.*, 39–61 (1997).CrossRefGoogle Scholar**75** - [20]Y. Vardi and D. Lee, “The discrete Radon transform and its approximate inversion via the EM algorithm,”
*Int. J. Imaging Syst. and Technol.*, 155–173 (1998).CrossRefGoogle Scholar**9** - [21]P. M. Salzberg, P. E. Rivera-Vega, and A. Rodriguez, “Network flow models for binary tomography on lattices,”
*Int. J. Imaging Syst. and Technol.*, 147–154 (1998).CrossRefGoogle Scholar**9** - [22]P. M. Salzberg, “Tomography in projective spaces: a heuristic for limited-angle reconstructive models,”
*SIAM J. Matrix Anal. Appl.*, 393–398 (1988).CrossRefGoogle Scholar**9** - [23]P. M. Salzberg, “An application of finite field theory to computerized tomography: A spatial limited-angle model,” In G. L. Mullen and P. Shiue
*Finite fields*,*Coding Theory*,*and Advances in Communications and Computing*, (Marcel Dekker, New York), pp. 395–402, 1992.Google Scholar - [24]P. M. Salzberg, A. Correa, and R. Cruz, “On a spatial limited-angle model for X-ray computerized tomography,” In
*Tomography*,*Impedance Imaging and Integral Geometry*, (Amer. Math. Soc., Providence, RI), pp. 25–33, 1994.Google Scholar - [25]R. Figueroa and P. M. Salzberg, “Pencil of lines on the 2-D torus,”
*Ars Combinatoria*, 235–240 (1994).Google Scholar**37** - [26]P. M. Salzberg and R. Figueroa, “Incidence pattern of a pencil of lines in the n-dimensional torus,”
*Congressus Numeratium*,197–204 (1993).Google Scholar**97**

## Copyright information

© Springer Science+Business Media New York 1999