Skip to main content

Tomography on the 3D-Torus and Crystals

  • Chapter
Discrete Tomography

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We exhibit a fast Radon transform on an ambient space over a finite field which furnishes spatial limited-angle models for electron and X-ray tomography. These algorithms have applications in crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Herman, “Two direct methods for reconstructing pictures from their projections: A comparative study,” Computer Graphics and Image Processing 1, 123–144 (1972).

    Article  Google Scholar 

  2. R. A. Gordon, “A tutorial on ART (Algebraic Reconstruction Techniques),” IEEE Trans. Nuclear Science 21 78–93 (1974).

    Article  Google Scholar 

  3. R. A. Brooks and G. Di Chiro, “Theory of image reconstruction in computed tomography,” Radiology 117 561–572 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. R. A. Brooks and G. Di Chiro, “Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging,” Physics in Medicine and Biology 21 689–732 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. G. T. Herman and R. M. Lewitt, “Overview of image reconstruction from projections,” In G. T. Herman, Image Reconstruction from Projections: Implementation and Applications (Springer-Verlag, Berlin), pp. 1–7, 1979.

    Chapter  Google Scholar 

  6. D. E. Kuhl and R. Q. Edwards, “Reorganizing data from transverse section scans of the brain using digital processing,” Radiology 91 975–983 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. M. Hall Jr., Combinatorial Theory, 2 Edition, (John Wiley and Sons, New York), 1986.

    Google Scholar 

  8. S. K. Chang and C. K. Chow, “The reconstruction of a three-dimensional object from two orthogonal projections and its applications to cardiac cineangiography,” IEEE Trans. Comput. 22 18–28 (1973).

    Article  Google Scholar 

  9. A. Klug and R. A. Crowther, “Three-dimensional image reconstruction from the viewpoint of information theory,” Nature 238 435–440 (1972).

    Article  Google Scholar 

  10. E. D. Bolker, “The finite Radon transform,” In R. L. Bryant, V. Guillemin, S. Helgason, and R. O. Wells Jr., Integral Geometry, (American Mathematical Society, Providence, RI), pp. 27–50, 1987.

    Chapter  Google Scholar 

  11. E. L. Grinberg, “The admissibility theorem for the hyperplane transform over a finite field,” J. Combinatorial Th., Series A 53 316–320 (1990).

    Article  Google Scholar 

  12. J. P. S. Kung, “Reconstructing finite Radon transforms,” Nuclear Physics B (Proc. Suppl.) 5A 44–49 (1988).

    Article  Google Scholar 

  13. G. T. Herman, “Reconstruction of binary patterns from a few projections,” In A. Günther, B. Levrat and H. Lipps, International Computing Symposium 1973, (North-Holland Publ. Co., Amsterdam), pp. 371–378,1974.

    Google Scholar 

  14. C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, and A. Ourmazd, “An approach to quantitative high-resolution transmission electron microscopy of crystalline materials,” Ultramicroscopy 58 131–155 (1995).

    Article  CAS  Google Scholar 

  15. P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Ourmazd, “Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy,” Phys. Rev. Let. 71 4150–4153 (1993).

    Article  CAS  Google Scholar 

  16. P. C. Fishburn, J. C. Lagarias, J. A. Reeds, and L. A. Shepp, “Sets uniquely determined by projections on axes. II. Discrete case,” Disc. Math. 91 149–159, 1991.

    Article  Google Scholar 

  17. R. Aharoni, G. T. Herman, and A. Kuba, “Binary vectors partially determined by linear equation systems,” Disc. Math. 171 1–16, 1997.

    Article  Google Scholar 

  18. A. Kuba, “Reconstruction of unique binary matrices with prescribed elements,” Acta Cybern. 12 57–70 (1995).

    Google Scholar 

  19. P. Fishburn, P. Schwander, L. Shepp, and R. J. Vanderbei, “A discrete Radon transform and its approximate inversion via linear programming,” Disc. Appl. Math. 75, 39–61 (1997).

    Article  Google Scholar 

  20. Y. Vardi and D. Lee, “The discrete Radon transform and its approximate inversion via the EM algorithm,” Int. J. Imaging Syst. and Technol. 9, 155–173 (1998).

    Article  Google Scholar 

  21. P. M. Salzberg, P. E. Rivera-Vega, and A. Rodriguez, “Network flow models for binary tomography on lattices,” Int. J. Imaging Syst. and Technol. 9, 147–154 (1998).

    Article  Google Scholar 

  22. P. M. Salzberg, “Tomography in projective spaces: a heuristic for limited-angle reconstructive models,” SIAM J. Matrix Anal. Appl. 9, 393–398 (1988).

    Article  Google Scholar 

  23. P. M. Salzberg, “An application of finite field theory to computerized tomography: A spatial limited-angle model,” In G. L. Mullen and P. Shiue Finite fields, Coding Theory, and Advances in Communications and Computing, (Marcel Dekker, New York), pp. 395–402, 1992.

    Google Scholar 

  24. P. M. Salzberg, A. Correa, and R. Cruz, “On a spatial limited-angle model for X-ray computerized tomography,” In Tomography,Impedance Imaging and Integral Geometry, (Amer. Math. Soc., Providence, RI), pp. 25–33, 1994.

    Google Scholar 

  25. R. Figueroa and P. M. Salzberg, “Pencil of lines on the 2-D torus,” Ars Combinatoria 37, 235–240 (1994).

    Google Scholar 

  26. P. M. Salzberg and R. Figueroa, “Incidence pattern of a pencil of lines in the n-dimensional torus,” Congressus Numeratium 97,197–204 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salzberg, P.M., Figueroa, R. (1999). Tomography on the 3D-Torus and Crystals. In: Herman, G.T., Kuba, A. (eds) Discrete Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1568-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1568-4_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7196-3

  • Online ISBN: 978-1-4612-1568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics