Advertisement

Heart Chamber Reconstruction from Biplane Angiography

  • Dietrich G. W. Onnasch
  • Guido P. M. Prause
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this chapter we describe an application of the binary tomography technique to routinely acquired biplane cardiac angiograms. The described model-based reconstruction approach aims to recover the 3D shape of the left or right heart chamber from the density profiles of orthogonal biplane ventriculograms. Several geometric and densitometric imaging errors need to be corrected in the clinical data before the moving heart chamber may be reconstructed slice-by-slice and frame-by-frame. The ventricular reconstructions allow for 3D visualization, volume determination, and regional wall motion analysis independently of the gantry setting used for image acquisition. The method has been applied to clinical angiograms and tested in left and right ventricular phantoms yielding a well shape conformity even with few model information. The results indicate that volumes of binary reconstructed ventricles are less projection-dependent compared to volume data derived by purely contour-based methods.

Keywords

Right Ventricular Density Profile Image Intensifier Heart Chamber Epipolar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K.-F. Kamm and D. G. W. Onnasch, “X-ray radiography,” In P. Lanzer and M. Lipton, Vascular Diseases: Principles and Technology, (Springer-Verlag, Berlin), pp. 63–98, 1997.Google Scholar
  2. [2]
    P. E. Lange, D. G. W. Onnasch, F. L. Farr, V. Malerczyk, and P. H. Heintzen, “Analysis of left and right ventricular size and shape, as determined from human casts. Description of the method and its validation,” Europ. J. Card. 8, 431–448 (1978).Google Scholar
  3. [3]
    P. E. Lange, D. G. W. Onnasch, F. L. Farr, and P. H. Heintzen, “Angiocardiographic left ventricular volume determination. Accuracy, as determined from human casts, and clinical application,” Europ. J. Card. 8, 449–476 (1978).Google Scholar
  4. [4]
    P. E. Lange, D. G. W. Onnasch, F. L. Farr, and P. H. Heintzen, “Angiocardiographic right ventricular volume determination. Accuracy, as determined from human casts, and clinical application,” Europ. J. Card. 8, 477–501 (1978).Google Scholar
  5. [5]
    H. J. Ryser, “The combinatorial properties of matrices of zeros and ones,” Canad. J. Math. 9, 371–377 (1957).CrossRefGoogle Scholar
  6. [6]
    S.-K. Chang and C. K. Chow, “The reconstruction of three-dimensional objects from two orthogonal projections and its application to cardiac cineangiography,” IEEE Trans. Comp. C-22 18–28 (1973).CrossRefGoogle Scholar
  7. [7]
    G. T. Herman, “Reconstruction of binary patterns from a few projections,” In A. Günther, B. Levrat, and H. Lipps, International Computing Symposium 1973, (North-Holland Publ. Co., Amsterdam), pp. 371–378, 1974.Google Scholar
  8. [8]
    D. G. W. Onnasch and P. H. Heintzen, “A new approach for the reconstruction of the right or left ventricular form from biplane angiocardiographic recordings,” In Conf. Comp. Card. 1976, (IEEE Comp. Soc. Press, Washington), pp. 67–73, 1976.Google Scholar
  9. [9]
    C. H. Slump and J. J. Gerbrands, “A network flow approach to reconstruction of the left ventricle from two projections,” Comp. Graph. Im. Proc. 18 18–36 (1982).CrossRefGoogle Scholar
  10. [10]
    A. Kuba, “The reconstruction of two-directionally connected binary patterns from their two orthogonal projections,” Comp. Vis. Graph. Im. Proc. 27 249–265 (1984).CrossRefGoogle Scholar
  11. [11]
    R. O. Kenet, E. M. Herrold, J. P. Hill, J. Waltman, A. Diamond, P. Fenster, J. Barba, M. Suardiaz, and J. S. Borer, “Reconstruction of coronary cross-sections from two orthogonal digital angiograms,” Conf. Comp. Card. 1986, (IEEE Comp. Soc. Press, Washington), pp. 273–276, 1987.Google Scholar
  12. [12]
    Y. Bao, “A pyramidal approach to three-dimensional reconstruction of a vascular system from two projections,” Conf. Comp. Ass. Rad. CAR’89 Berlin, Springer-Verlag, Berlin, pp. 317–321 (1989).Google Scholar
  13. [13]
    Z. D. Bai, P. R. Krishnaiah, C. R. Rao, P. S. Reddy, Y. N. Sun, and L. C. Zhao, “Reconstruction of the left ventricle from two orthogonal projections,” Comp. Vis. Graph. Im. Proc. 47 165–188 (1989).CrossRefGoogle Scholar
  14. [14]
    C. Pellot, A. Herment, M. Sigelle, P. Horain, H. Maître, and P. Peronneau, “A 3D reconstruction of vascular structures from two X-ray angiograms using an adapted simulated annealing algorithm,” IEEE Trans. Med. Imag. 13 48–60 (1994).CrossRefGoogle Scholar
  15. [15]
    G. P. M. Prause, “Binäre Rekonstruktion der dreidimensionalen dynamischen Ventrikelgeometrie aus biplanen angiokardiographischen Bildserien,” Fortschritt-Bericht 121, Reihe 17 (Biotechnik), (VDI-Verlag, Düsseldorf), 1995.Google Scholar
  16. [16]
    G. P. M. Prause and D. G. W Onnasch, “Binary reconstruction of the heart chambers from biplane angiographic image sequences,” IEEE Trans. Med. Imag. 15 532–46 (1997).CrossRefGoogle Scholar
  17. [17]
    J. M. Boone, J. A. Seibert, W. A. Barrett, and E. A. Blood, “Analysis and correction of imperfections in the image intensifier-TV-digitizer imaging chain,” Med. Phys. 8 236–242 (1991).CrossRefGoogle Scholar
  18. [18]
    S. Rudin, D. R. Bednarek, and R. Wong, “Accurate characterization of image intensifier distortion,” Med. Phys. 18 1145–1151 (1991).CrossRefPubMedGoogle Scholar
  19. [19]
    D. G. W. Onnasch and G. P. M. Prause, “Geometric image correction and iso-center calibration at oblique biplane angiographic views,” In Conf. Comp. Card. 1992, (IEEE Comp. Soc. Press, Los Alamitos), pp. 647–650, 1992.Google Scholar
  20. [20]
    G. P. M. Prause and D. G. W. Onnasch, “Biplane angiocardiography: General solution for pairing images taken from oblique views,” In Comp. Ass. Rad. CAR’93, (Springer-Verlag, Berlin), pp. 547–552, 1993.Google Scholar
  21. [21]
    H. P. Trivedi, “A semi-analytic method of determining stereo camera geometry from matched points in a pair of images: Coincident meridional planes, exact or noisy data,” Comp. Vis. Graph. Im. Proc. 51 299–312 (1990).CrossRefGoogle Scholar
  22. [22]
    A. Wahle, E. Wellnhofer, I. Mugaragu, H.U. Sauer, H. Oswald, and E. Fleck, “Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms,” IEEE Trans. Med. Imag. 14 230–241 (1995).CrossRefGoogle Scholar
  23. [23]
    O. Stützer and D. G. W. Onnasch, “Visualisierung der linken Herzkammer nach ihrer Binärrekonstruktion aus biplanen angiographischen Bildserien zur räumlichen Analyse des Kontraktionsablaufs,” Biomedizinische Technik, 41 suppl. 1, 634–635 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Dietrich G. W. Onnasch
    • 1
  • Guido P. M. Prause
    • 2
  1. 1.Department for Pediatric Cardiology and Biomedical EngineeringUniversity of KielKielGermany
  2. 2.MeVis — Center for Medical Diagnostic Systems and VisualizationUniversity of BremenBremenGermany

Personalised recommendations