Skip to main content

3D Reconstruction from Sparse Radiographic Data

  • Chapter
Discrete Tomography

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Nondestructive evaluation of materials through X-ray and -y-ray radiography has long been achieved by inferring three-dimensional structure from exposed films. Multiple views with varying positions of radioactive sources and the film have the potential for direct three-dimensional tomographic reconstruction for more detailed diagnosis of material flaws. The data are sufficiently sparse, however, to leave the reconstruction badly under-specified, requiring regularization and/ or constraints to achieve meaningful results. In this chapter we discuss and illustrate the application of Bayesian binary 3D tomographic reconstruction to radiographs, including the several non-idealities frequently encountered in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Halmshaw, Industrial Radiography: Theory and Practice (Applied Science Publishers, London), 1982.

    Google Scholar 

  2. L. E. Bryant, P. McIntire, and R. C. McMaster (Eds.), Nondestructive Testing Handbook,2Edition (American Society for Nondestructive Testing, Columbus, Ohio), 1985, Volume 3.

    Google Scholar 

  3. S. Gautier, J. Idier, A. Mohammad-Djafari, and B. Lavayssière, “X-ray and ultrasound data fusion,” In Proc. IEEE Int’l Conf. Image Proc., (IEEE, Piscataway, NJ), pp. (III)366-(III)369, 1998.

    Google Scholar 

  4. A. C. Kak, “Computerized tomography with X-ray, emission, and ultrasound sources,” Proc. IEEE 67, 1245–1272 (1979).

    Article  Google Scholar 

  5. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Amer. A 6, 612–619 (1984).

    Article  Google Scholar 

  6. P. Grangeat, “Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform,” In G. T. Herman, A. K. Louis and F. Natterer, Mathematical Methods in Tomography, (Springer-Verlag, Berlin), pp. 66–97, 1991.

    Chapter  Google Scholar 

  7. R. M. Ranggayyan, A. T. Dhawan, and R. Gordon, “Algorithms for limited-view computed tomography: An annotated bibliography and a challenge,” Applied Optics 24 4000–4012 (1985).

    Article  Google Scholar 

  8. G. T. Herman, H. Hurwitz, A. Lent, and H-P. Lung, “On the Bayesian approach to image reconstruction,” Info. and Cont. 42, 60–71 (1979).

    Article  Google Scholar 

  9. K. M. Hanson and G. W. Wecksung, “Bayesian approach to limited-angle reconstruction in computed tomography,” J. Opt. Soc. Am. 73, 1501–1509 (1983).

    Article  Google Scholar 

  10. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York), 1980.

    Google Scholar 

  11. C. Bouman and K. Sauer, “A unified approach to statistical tomography using coordinate descent optimization,” IEEE Trans. Image Proc. 5, 480–492 (1996).

    Article  CAS  Google Scholar 

  12. E. Segre, Nuclei and Particles (W. A. Benjamin, Reading, MA), 1977.

    Google Scholar 

  13. G. H. Glover, “Compton scatter effects in CT reconstructions,” Med. Phys. 9, 860–867 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. H. Fahmi and A. Macovski, “Reducing the effects of scattered photons in X-ray projection imaging,” IEEE Trans. Med. Imaging 8, 56–63 (1989).

    Article  Google Scholar 

  15. J. Nuyts, H. Bosmans, and P. Suetens, “An analytical model for Compton scatter in a homogeneously attenuating medium,” IEEE Trans. Med. Imaging 12 421–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. K. Sauer, J. Sachs Jr., and C. Klifa, “Bayesian estimation of 3-D objects from few radiographs,” IEEE Trans. Nucl. Sci. 41, 1780–1790 (1994).

    Article  Google Scholar 

  17. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Anal. and Mach. Intell. PAMI-6 721–741 (1984).

    Article  CAS  Google Scholar 

  18. J. Besag, “On the statistical analysis of dirty pictures,” J. Roy. Statist. Soc. B 48 259–302 (1986).

    Google Scholar 

  19. J. Marroquin, S. Mitter, and T. Poggio, “Probabilistic solution of ill-posed problems in computational vision,” J. Am. Stat. Assoc. 82 76–89 (1987).

    Article  Google Scholar 

  20. C. Bouman and K. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Trans. Image Proc. 2, 296–310 (1993).

    Article  CAS  Google Scholar 

  21. M. Soumekh, “Binary image reconstruction from four projections,” In Proc. IEEE Int’l Conf. Acoust., Speech and Sig. Proc., (IEEE, New York), pp. 1280–1283, 1988.

    Google Scholar 

  22. J. M. Dinten, “Tomographie à partir d’un nombre très limité de projections, regularisation par des champs markoviens,” Doctoral Thesis, University of Paris XI (1990).

    Google Scholar 

  23. C. Klifa and B. Lavayssière, “3D reconstruction using a limited number of projections,” In Proc. SPIE Conf. Vis. Comm. and Im. Proc., (SPIE, Bellingham, WA), pp. 443–454, 1990.

    Google Scholar 

  24. J. L. Sachs Jr. and K. Sauer, “Object-oriented methods in Bayesian 3-D tomographic reconstruction from radiographs,” In Proc. 36th Midwest Symp. Circ. and Sys., (IEEE, Piscataway, NJ), pp. 241–244,1993.

    Chapter  Google Scholar 

  25. C. Klifa, “Reconstruction tridimensionelle d’objets à partir d’un nombre très limité de projections: Application à la radiographie industrielle,” Ph.D. Thesis, Telecom Paris (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sachs, J., Sauer, K. (1999). 3D Reconstruction from Sparse Radiographic Data. In: Herman, G.T., Kuba, A. (eds) Discrete Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1568-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1568-4_16

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7196-3

  • Online ISBN: 978-1-4612-1568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics