Advertisement

Discrete Tomography: A Historical Overview

  • Attila Kuba
  • Gabor T. Herman
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this chapter we introduce the topic of discrete tomography and give a brief historical survey of the relevant contributions. After discussing the nature of the basic theoretical problems (those of consistency, uniqueness, and reconstruction) that arise in discrete tomography, we give the details of the classical special case (namely, two-dimensional discrete sets — i.e.,binary matrices — and two orthogonal projections) including a polynomial time reconstruction algorithm. We conclude the chapter with a summary of some of the applications of discrete tomography.

Keywords

Lattice Line Variant Position Binary Matrix Historical Overview Algebraic Reconstruction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, (Academic Press, New York), 1980.Google Scholar
  2. [2]
    G. G. Lorentz, “A problem of plane measure,” Amer. J. Math., 71, 417–426 (1949).CrossRefGoogle Scholar
  3. [3]
    A. Rényi, “On projections of probability distributions,” Acta Math. Acad. Sci. Hung., 3, 131–142 (1952).CrossRefGoogle Scholar
  4. [4]
    A. Heppes, “On the determination of probability distributions of more dimensions by their projections,” Acta Math. Acad. Sci. Hung., 7, 403–410 (1956).CrossRefGoogle Scholar
  5. [5]
    H. Kellerer, “Funktionen auf Produkträumen mit vorgegebenen Marginal-Funktionen,” Math. Ann., 144, 323–344 (1961).CrossRefGoogle Scholar
  6. [6]
    H. Kellerer, “Masstheoretische Marginalprobleme,” Math. Ann. 153, 168–198 (1964).CrossRefGoogle Scholar
  7. [7]
    H. Kellerer, “Marginalprobleme für Funktionen,” Math. Ann., 154, 147–150 (1964).CrossRefGoogle Scholar
  8. [8]
    H. J. Ryser, “Combinatorial properties of matrices of zeros and ones,” Ganad. J. Math., 9, 371–377 (1957).CrossRefGoogle Scholar
  9. [9]
    D. Gale, “A theorem on flows in networks,” Pacific J. Math., 7, 1073–1082 (1957).CrossRefGoogle Scholar
  10. [10]
    H. J. Ryser, “Traces of matrices of zeros and ones,” Canad. J. Math., 12, 463–476 (1960).CrossRefGoogle Scholar
  11. [11]
    L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, (Princeton University Press, Princeton, NJ), 1962.Google Scholar
  12. [12]
    J. Steiner “Einfache Beweis der isoperimetrischen Hauptsätze,” J. reine angew. Math., 18, 289–296 (1838).Google Scholar
  13. [13]
    P. C. Hammer “Problem 2,” In Proc. Symp. Pure Math., vol. VII: Convexity, (Amer. Math. Soc., Providence, RI), pp. 498–499, 1963.Google Scholar
  14. [14]
    O. Giering, “Bestimmung von Eibereichen und Eikörpern durch Steiner-Symmetrisierungen,” Sitzungsberichten Bayer. Akad. Wiss. München, Math.-Nat. Kl., pp. 225–253 (1962).Google Scholar
  15. [15]
    R. J. Gardner and P. McMullen, “On Hammer’s X-ray problem,” J. London Math. Soc., 21, 171–175 (1980).CrossRefGoogle Scholar
  16. [16]
    R. J. Gardner, Geometric Tomography, (Cambridge University Press, Cambridge, UK), 1995.Google Scholar
  17. [17]
    G. Bianchi and M. Longinetti, “Reconstructing plane sets from projections,” Discrete Comp. Geom., 5, 223–242 (1990).CrossRefGoogle Scholar
  18. [18]
    R. J. Gardner and P. Gritzmann, “Discrete tomography: Determination of finite sets by X-rays,” Trans. Amer. Math. Soc., 349, 2271–2295 (1997).CrossRefGoogle Scholar
  19. [19]
    P. Gritzmann and M. Nivat (Eds.), Discrete Tomography: Algorithms and Complexity, (Dagstuhl-Seminar-Report 165, Dagstuhl, Germany), 1997.Google Scholar
  20. [20]
    G. T. Herman and A. Kuba (Editors), Discrete Tomography,. Special Issue of Intern. J. of Imaging Systems and Techn., Vol. 9, No. 2/3, 1998.Google Scholar
  21. [21]
    R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,” J. Theor. Biol., 29, 471–481 (1970).CrossRefPubMedGoogle Scholar
  22. [22]
    G. T. Herman, A. Lent, and S. W. Rowland, “ART: Mathematics and applications,” J. Theor. Biol., 42, 1–32 (1973).CrossRefPubMedGoogle Scholar
  23. [23]
    G. T. Herman, “Reconstruction of binary patterns from a few projections,” In A. Günther, B. Levrat and H. Lipps, Intern, Computing Symposium 1973, (North-Holland Publ. Co., Amsterdam), pp. 371–378, 1974.Google Scholar
  24. [24]
    P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Intern. J. of Imaging Systems and Techn., 9, 101–109 (1998).CrossRefGoogle Scholar
  25. [25]
    Y. Vardi and D. Lee, “The discrete Radon transform and its approximate inversion via the EM algorithm,” Intern. J. Imaging Systems and Techn., 9, 155–173 (1998).CrossRefGoogle Scholar
  26. [26]
    J. H. B. Kemperman and A. Kuba, “Reconstruction of two-valued matrices from their two projections,” Intern. J. of Imaging Systems and Techn., 9, 110–117 (1998).CrossRefGoogle Scholar
  27. [27]
    D. Rossi and A. Willsky, “Reconstruction from projections based on detection and estimation of objects: Performance analysis and robustness analysis,” IEEE Trans. Acoust. Speech Signal Process., 32, 886–906 (1984).CrossRefGoogle Scholar
  28. [28]
    J. Singer, F. A. Grünbaum, P. Kohn, and J. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science, 248, 990–993 (1990).CrossRefPubMedGoogle Scholar
  29. [29]
    D. R. Fulkerson and H. J. Ryser, “Width sequences for special classes of (0,1)-matrices,” Canad. J. Math., 15, 371–396 (1963).CrossRefGoogle Scholar
  30. [30]
    S.-K. Chang and Y. R. Wang, “Three-dimensional reconstruction from orthogonal projections,” Pattern Recognition, 7, 167–176 (1975).CrossRefGoogle Scholar
  31. [31]
    S.-K. Chang, “The reconstruction of binary patterns from their projections,” Commun. ACM, 14, 21–25 (1971).CrossRefGoogle Scholar
  32. [32]
    S.-K. Chang, “Algorithm 445. Binary pattern reconstruction from projections,” Commun. ACM, 16, 185–186 (1973).CrossRefGoogle Scholar
  33. [33]
    Y. R. Wang, “Characterization of binary patterns and their projections,” IEEE Trans. Computers, C24, 1032–1035 (1975).CrossRefGoogle Scholar
  34. [34]
    W. Wandi, “The class 2t(R, S), of (0,1)-matrices,” Discrete Math., 39, 301–305 (1982).CrossRefGoogle Scholar
  35. [35]
    W. Honghui, “Structure and cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Math. Research and Exposition, 4, 87–93 (1984).Google Scholar
  36. [36]
    S. Jiayu, “On a guess about the cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Tongji Univ., 14, 52–55 (1986).Google Scholar
  37. [37]
    W. Xiaohong, “The cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Sichuan Univ. Nat. Sci. Edition, 4, 95–99 (1986).Google Scholar
  38. [38]
    W. Xiaohong, “A necessary and sufficient condition for 14(R,S)I, to equal its lower bound,” J. Sichuan Univ. Nat. Sci. Edition, 24, 136–143 (1987).Google Scholar
  39. [39]
    L. Mirsky, Transversal Theory, (Academic Press, New York), 1971.Google Scholar
  40. [40]
    D. R. Fulkerson, “Zero-one matrices with zero trace,” Pacific J. Math., 10, 831–836 (1960).CrossRefGoogle Scholar
  41. [41]
    R. P. Anstee, “Properties of a class of (0,1)-matrices covering a given matrix,” Canad. J. Math., 34, 438–453 (1982).CrossRefGoogle Scholar
  42. [42]
    R. P. Anstee, “Triangular (0,1)-matrices with prescribed row and column sums,” Discrete Math., 40, 1–10 (1982).CrossRefGoogle Scholar
  43. [43]
    R. P. Anstee, “The network flows approach for matrices with given row and column sums,” Discrete Math., 44, 125–138 (1983).CrossRefGoogle Scholar
  44. [44]
    L. Mirsky, “Combinatorial theorems and integral matrices,” J. Combin. Theor., 5, 30–44 (1968).CrossRefGoogle Scholar
  45. [45]
    A. Kuba and A. Volcic, “Characterization of measurable plane sets which are reconstructable from their two projections,” Inverse Problems, 4, 513–527 (1988).CrossRefGoogle Scholar
  46. [46]
    P. C. Fishburn, J. C. Lagarias, J. A. Reeds, and L. A. Shepp, “Sets uniquely determined by projections on axes II. Discrete case,” Discrete Math., 91, 149–159 (1991).CrossRefGoogle Scholar
  47. [47]
    H. J. Ryser, Combinatorial Mathematics, (The Math. Assoc. Amer., Washington, DC), 1963.Google Scholar
  48. [48]
    R. A. Brualdi, “Matrices of zeros and ones with fixed row and column sum vectors,” Lin. Algebra and Its Appl., 33, 159–231 (1980).CrossRefGoogle Scholar
  49. [49]
    A. Kuba, “Reconstruction of unique binary matrices with prescribed elements,” Acta Cybern., 12, 57–70 (1995).Google Scholar
  50. [50]
    R. Aharoni, G. T. Herman, and A. Kuba, “Binary vectors partially determined by linear equation systems,” Discrete Math., 171,1–16 (1997).CrossRefGoogle Scholar
  51. [51]
    H. J. Ryser, “The term rank of a matrix,” Canad. J. Math, 10, 57–65 (1958).CrossRefGoogle Scholar
  52. [52]
    H. J. Ryser, “Matrices of zeros and ones,” Bull. Amer. Math. Soc., 66, 442–464 (1960).CrossRefGoogle Scholar
  53. [53]
    M. Haber, “Term rank of 0, 1 matrices,” Rend. Sem. Mat. Padova, 30, 24–51 (1960).Google Scholar
  54. [54]
    A. Kuba, “Determination of the structure of the class 21(R, S), of (0,1)-matrices,” Acta Cybernetica, 9, 121–132 (1989).Google Scholar
  55. [55]
    W. Y. C. Chen, “Integral matrices with given row and column sums,” J. Combin. Theory, Ser,. A 61, 153–172 (1992).CrossRefGoogle Scholar
  56. [56]
    S.-K. Chang and G. L. Shelton, “Two algorithms for multiple-view binary pattern reconstruction,” IEEE Trans. Systems, Man, Cybernetics SMC., 1, 90–94 (1971).CrossRefGoogle Scholar
  57. [57]
    L. Huang, “The reconstruction of uniquely determined plane sets from two projections in discrete case,” Preprint Series, UTMS 95–29, Univ. of Tokyo (1995).Google Scholar
  58. [58]
    A. Kuba, “The reconstruction of two-directionally connected binary patterns from their two orthogonal projections,” Comp. Vision,Graphics, Image Proc., 27, 249–265 (1984).CrossRefGoogle Scholar
  59. [59]
    A. Rosenfeld and A. C. Kak, “Digital Picture Processing,” (Academic Press, New York) 1976.Google Scholar
  60. [60]
    G. T. Herman, “Geometry of Digital Spaces,” (Birkhäuser, Boston) 1998.Google Scholar
  61. [61]
    A. Del Lungo, M. Nivat and R. Pinzani, “The number of convex polyominoes reconstructible from their orthogonal projections,” Discrete Math., 157, 65–78 (1996).CrossRefGoogle Scholar
  62. [62]
    E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, “Reconstructing convex polyominoes from horizontal and vertical projections,” Theor. Comput. Sci., 155, 321–347 (1996).CrossRefGoogle Scholar
  63. [63]
    E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, “Medians of polyominoes: A property for the reconstruction,” Int. J. Imaging Systems and Techn., 9, 69–77 (1998).CrossRefGoogle Scholar
  64. [64]
    M. Chrobak and C. Dürr, “Reconstructing hv-convex polyominoes from orthogonal projections,” (Preprint, Dept. of Computer Science, Univ. of California, Riverside, CA), 1998.Google Scholar
  65. [65]
    G. J. Woeginger, “The reconstruction of polyominoes from their orthogonal projections,” (Techn. Rep. F003, TU-Graz), 1996.Google Scholar
  66. [66]
    R. W. Irving and M. R. Jerrum, “Three-dimensional statistical data security problems,” SIAM J. Comput., 23, 170–184 (1994).CrossRefGoogle Scholar
  67. [67]
    A. R. Shliferstein and Y. T. Chien, “Some properties of image-processing operations on projection sets obtained from digital pictures,” IEEE Trans. Comput., C-26, 958–970 (1977).CrossRefGoogle Scholar
  68. [68]
    Z. Mao and R. N. Strickland, “Image sequence processing for target estimation in forward-looking infrared imagery,” Optical Engrg., 27, 541–549 (1988).Google Scholar
  69. [69]
    A. Fazekas, G. T. Herman, and A. Matej, “On processing binary pictures via their projections,” Int. J. Imaging Systems and Techn., 9, 99–100 (1998).CrossRefGoogle Scholar
  70. [70]
    A. V. Crewe and D. A. Crewe, “Inexact reconstruction: Some improvements,” Ultramicroscopy, 16, 33–40 (1985).CrossRefGoogle Scholar
  71. [71]
    P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Ourmazd, “Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy,” Phys. Rev. Letters, 71, 4150–4153 (1993).CrossRefGoogle Scholar
  72. [72]
    C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, and A. Ourmazd, “An approach to quantitative high-resolution electron microscopy of crystalline materials,” Ultramicroscopy, 58, 131–155 (1995).CrossRefGoogle Scholar
  73. [73]
    D. G. W. Onnasch, and P. H. Heintzen, “A new approach for the reconstruction of the right or left ventricular form from biplane angiocardiographic recordings,” In Conf. Comp. Card. 1976, (IEEE Comp. Soc. Press, Washington), pp. 67–73, 1976.Google Scholar
  74. [74]
    C. H. Slump and J. J. Gerbrands, “A network flow approach to reconstruction of the left ventricle from two projections,” Comp. Graphics and Image Proc., 18, 18–36 (1982).CrossRefGoogle Scholar
  75. [75]
    G. P. M. Prause and D. G. W. Onnasch, “Binary reconstruction of the heart chambers from biplane angiographic image sequences,” IEEE Trans. Medical Imaging, MI15, 532–546 (1996).CrossRefGoogle Scholar
  76. [76]
    S.-K. Chang and C. K. Chow, “The reconstruction of three-dimensional objects from two orthogonal projections and its application to cardiac cineangiography,” IEEE Trans. Comput., C22, 18–28 (1973).CrossRefGoogle Scholar
  77. [77]
    B. M. Carvalho, G. T. Herman, S. Matej, C. Salzberg, and E. Vardi, “Binary tomography for triplane cardiography,” In A. Kuba, M. Samal, A. Todd-Pokropek, Information Processing in Medical Imaging Conference, 1999 (Springer-Verlag, Berlin), to be published.Google Scholar
  78. [78]
    N. Robert, F. Peyrin, and M. J. Yaffe, “Binary vascular reconstruction from a limited number of cone beam projections,” Med. Phys., 21, 1839–1851 (1994).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Attila Kuba
    • 1
  • Gabor T. Herman
    • 2
  1. 1.Department of Applied InformaticsJózsef Attila UniversitySzegedHungary
  2. 2.Department of Radiology, Medical Image Processing GroupUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations